В чем заключается метод симпсона. Старт в науке

При вычислении определенного интеграла не всегда получаем точное решение. Не всегда удается представление в виде элементарной функции. Формула Ньютона-Лейбница не подходит для вычисления, поэтому необходимо использовать методы численного интегрирования. Такой метод позволяет получать данные с высокой точностью. Метод Симпсона является таковым.

Для этого необходимо дать графическое представление выведению формулы. Далее идет запись оценки абсолютной погрешности при помощи метода Симпсона. В заключении произведем сравнение трех методов: Симпсона, прямоугольников, трапеций.

Метод парабол – суть, формула, оценка, погрешности, иллюстрации

Задана функция вида y = f (x) , имеющая непрерывность на интервале [ a ; b ] , необходимо произвести вычисление определенного интеграла ∫ a b f (x) d x

Необходимо разбить отрезок [ a ; b ] на n отрезков вида x 2 i - 2 ; x 2 i , i = 1 , 2 , . . . , n с длиной 2 h = b - a n и точками a = x 0 < x 2 < x 4 < . . . < x 2 π - 2 < x 2 π = b . Тогда точки x 2 i - 1 , i = 1 , 2 , . . . , n считаются серединами отрезков x 2 i - 2 ; x 2 i , i = 1 , 2 , . . . , n . Данный случай показывает, что определение узлов производится через x i = a + i · h , i = 0 , 1 , . . . , 2 n .

Каждый интервал x 2 i - 2 ; x 2 i , i = 1 , 2 , . . . , n подынтегральной функции приближен при помощи параболы, заданной y = a i x 2 + b i x + c i , проходящей через точки с координатами x 2 i - 2 ; f (x 2 i - 2) , x 2 i - 1 ; x 2 i - 1 , x 2 i ; f (x 2 i) . Поэтому метод и имеет такое название.

Данные действия выполняются для того, чтобы интеграл ∫ x 2 i - 2 x 2 i a i x 2 + b i x + c i d x взять в качестве приближенного значения ∫ x 2 i - 2 x 2 i f (x) d x . Можем вычислить при помощи формулы Ньютона-Лейбница. Это и есть суть метода парабол.Рассмотрим рисунок, приведенный ниже.

Графическая иллюстрация метода парабол (Симпсона)

При помощи красной линии изображается график функции y = f (x) , синей – приближение графика y = f (x) при помощи квадратичных парабол.

Исходя из пятого свойства определенного интеграла получаем ∫ a b f (x) d x = ∑ i = 1 n ∫ x 2 i - 2 x 2 i f (x) d x ≈ ∑ i = 1 n ∫ x 2 i - 2 x 2 i (a i x 2 + b i x + c i) d x

Для того чтобы получить формулу методом парабол, необходимо произвести вычисление:

∫ x 2 i - 2 x 2 i (a i x 2 + b i x + c i) d x

Пусть x 2 i - 2 = 0 . Рассмотрим рисунок, приведенный ниже.

Изобразим, что через точки с координатами x 2 i - 2 ; f (x 2 i - 2) , x 2 i - 1 ; x 2 i - 1 , x 2 i ; f (x 2 i) может проходить одна квадратичная парабола вида y = a i x 2 + b i x + c i . Иначе говоря, необходимо доказать, что коэффициенты могут определяться только единственным способом.

Имеем, что x 2 i - 2 ; f (x 2 i - 2) , x 2 i - 1 ; x 2 i - 1 , x 2 i ; f (x 2 i) являются точками параболы, тогда каждое из представленных уравнений является справедливым. Получаем, что

a i (x 2 i - 2) 2 + b i · x 2 i - 2 + c i = f (x 2 i - 2) a i (x 2 i - 1) 2 + b i · x 2 i - 1 + c i = f (x 2 i - 1) a i (x 2 i) 2 + b i · x 2 i + c i = f (x 2 i)

Полученная система разрешается относительно a i , b i , c i , где необходимо искать определитель матрицы по Вандермонду. Получаем, что

(x 2 i - 2) 2 x 2 i - 2 1 x 2 i - 1) 2 x 2 i - 1 1 (x 2 i) 2 x 2 i 1 , причем он считается отличным от нуля и не совпадает с точками x 2 i - 2 , x 2 i - 1 , x 2 i . Это признак того, что уравнение имеет только одно решение, тогда и выбранные коэффициенты a i ; b i ; c i могут определяться только единственным образом, тогда через точки x 2 i - 2 ; f (x 2 i - 2) , x 2 i - 1 ; x 2 i - 1 , x 2 i ; f (x 2 i) может проходить только одна парабола.

Можно переходить к нахождению интеграла ∫ x 2 i - 2 x 2 i (a i x 2 + b i x + c i) d x .

Видно, что

f (x 2 i - 2) = f (0) = a i · 0 2 + b i · 0 + c i = c i f (x 2 i - 1) = f (h) = a i · h 2 + b i · h + c i f (x 2 i) = f (0) = 4 a i · h 2 + 2 b i · h + c i

Для осуществления последнего перехода необходимо использовать неравенство вида

∫ x 2 i - 2 x 2 i (a i x 2 + b i x + c i) d x = ∫ 0 2 h (a i x 2 + b i x + c i) d x = = a i x 3 3 + b i x 2 2 + c i x 0 2 h = 8 a i h 3 3 + 2 b i h 2 + 2 c i h = = h 3 8 a i h 2 + 6 b i h + 6 c i = h 3 f x 2 i - 2 + 4 f 2 2 i - 1 + f x 2 i

Значит, получаем формулу, используя метод парабол:

∫ a b f (x) d x ≈ ∑ i = 1 n ∫ x 2 i - 2 x 2 i a i x 2 + b i x + c i d x = = ∑ i = 1 n h 3 (f (x 2 i - 2) + 4 f (x 2 i - 1) + f (x 2 i)) = = h 3 f (x 0) + 4 f (x 1) + f (x 2) + f (x 2) + 4 f (x 3) + f (x 4) + . . . + + f (x 2 n - 2) + 4 f (x 2 n - 1) + f (x 2 n) = = h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n)

Определение 1

Формула метода Симпсона имеет вид ∫ a b f (x) d x ≈ h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n) .

Формула оценки абсолютной погрешности имеет вид δ n ≤ m a x [ a ; b ] f (4) (x) · (b - a) 5 2880 n 4 .

Примеры приближенного вычисления определенных интегралов методом парабол

Метод Симпсона предполагает приближенное вычисление определенных интегралов. Чаще всего имеются два типа задач, для которых применим данный метод:

  • при приближенном вычислении определенного интеграла;
  • при нахождении приближенного значения с точностью δ n .

На точность вычисления влияет значение n , чем выше n , тем точнее промежуточные значения.

Пример 1

Вычислить определенный интеграл ∫ 0 5 x d x x 4 + 4 при помощи метода Симпсона, разбивая отрезок интегрирования на 5 частей.

Решение

По условию известно, что a = 0 ; b = 5 ; n = 5 , f (x) = x x 4 + 4 .

Тогда запишем формулу Симпсона в виде

∫ a b f (x) d x ≈ h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n)

Чтобы применить ее в полной мере, необходимо рассчитать шаг по формуле h = b - a 2 n , определить точки x i = a + i · h , i = 0 , 1 , . . . , 2 n и найти значения подынтегральной функции f (x i) , i = 0 , 1 , . . . , 2 n .

Промежуточные вычисления необходимо округлять до 5 знаков. Подставим значения и получим

h = b - a 2 n = 5 - 0 2 · 5 = 0 . 5

Найдем значение функции в точках

i = 0: x i = x 0 = a + i · h = 0 + 0 · 0 . 5 = 0 ⇒ f (x 0) = f (0) = 0 0 4 + 4 = 0 i = 1: x i = x 1 = a + i · h = 0 + 1 · 0 . 5 = 0 . 5 ⇒ f (x 1) = f (0 . 5) = 0 . 5 0 . 5 4 + 4 ≈ 0 . 12308 . . . i = 10: x i = x 10 = a + i · h = 0 + 10 · 0 . 5 = 5 ⇒ f (x 10) = f (5) = 5 5 4 + 4 ≈ 0 . 00795

Наглядность и удобство оформляется в таблице, приведенной ниже

i 0 1 2 3 4 5
x i 0 0 . 5 1 1 . 5 2 2 . 5
f x i 0 0 . 12308 0 . 2 0 . 16552 0 . 1 0 . 05806
i 6 7 8 9 10
x i 3 3 . 5 4 4 . 5 5
f x i 0 . 03529 0 . 02272 0 . 01538 0 . 01087 0 . 00795

Необходимо подставить результаты в формулу метода парабол:

∫ 0 5 x d x x 4 + 4 ≈ h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n) = = 0 . 5 3 0 + 4 · 0 . 12308 + 0 . 16552 + 0 . 05806 + + 0 . 02272 + 0 . 01087 + 2 · 0 . 2 + 0 . 1 + + 0 . 03529 + 0 . 01538 + 0 . 00795 ≈ ≈ 0 . 37171

Для вычисления мы выбрали определенный интеграл, который можно вычислить по Ньютону-Лейбницу. Получим:

∫ 0 5 x d x x 4 + 4 = 1 2 ∫ 0 5 d (x 2) x 2 2 + 4 = 1 4 a r c t g x 2 2 0 5 = 1 4 a r c t g 25 2 ≈ 0 . 37274

Ответ: Результаты совпадают до сотых.

Пример 2

Вычислить неопределенный интеграл ∫ 0 π sin 3 x 2 + 1 2 d x при помощи метода Симпсона с точностью до 0 , 001 .

Решение

По условию имеем, что а = 0 , b = π , f (x) = sin 3 x 2 + 1 2 , δ n ≤ 0 . 001 . Необходимо определить значение n . Для этого используется формула оценки абсолютной погрешности метода Симпсона вида δ n ≤ m a x [ a ; b ] f (4) (x) · (b - a) 5 2880 n 4 ≤ 0 . 001

Когда найдем значение n , то неравенство m a x [ a ; b ] f (4) (x) · (b - a) 5 2880 n 4 ≤ 0 . 001 будет выполняться. Тогда, применив метод парабол, погрешность при вычислении не превысит 0 . 001 . Последнее неравенство примет вид

n 4 ≥ m a x [ a ; b ] f (4) (x) · (b - a) 5 2 . 88

Теперь необходимо выяснить, какое наибольшее значение может принимать модуль четвертой производной.

f " (x) = sin 3 x 2 + 1 2 " = 3 2 cos 3 x 2 ⇒ f "" (x) = 3 2 cos 3 x 2 " = - 9 4 sin 3 x 2 ⇒ f " " " (x) = - 9 4 sin 3 x 2 " = - 27 8 cos 3 x 2 ⇒ f (4) (x) = - 27 8 cos 3 x 2 " = 81 16 sin 3 x 2

Область определения f (4) (x) = 81 16 sin 3 x 2 принадлежит интервалу - 81 16 ; 81 16 , а сам отрезок интегрирования [ 0 ; π) имеет точку экстремума, из этого следует, что m a x [ 0 ; π ] f (4) (x) = 81 16 .

Производим подстановку:

n 4 ≥ m a x [ a ; b ] f (4) (x) · (b - a) 5 2 . 88 ⇔ n 4 ≥ 81 16 · π - 0 5 2 . 88 ⇔ ⇔ n 4 > 537 . 9252 ⇔ n > 4 . 8159

Получили, что n – натуральное число, тогда его значение может быть равным n = 5 , 6 , 7 … для начала необходимо взять значение n = 5 .

Действия производить аналогично предыдущему примеру. Необходимо вычислить шаг. Для этого

h = b - a 2 n = π - 0 2 · 5 = π 10

Найдем узлы x i = a + i · h , i = 0 , 1 , . . . , 2 n , тогда значение подынтегральной функции будет иметь вид

i = 0: x i = x 0 = a + i · h = 0 + 0 · π 10 = 0 ⇒ f (x 0) = f (0) = sin 3 · 0 2 + 1 2 = 0 . 5 i = 1: x i = x 1 = a + i · h = 0 + 1 · π 10 = π 10 ⇒ f (x 1) = f (π 10) = sin 3 · π 10 2 + 1 2 ≈ 0 . 953990 . . . i = 10: x i = x 10 = a + i · h = 0 + 10 · π 10 = π ⇒ f (x 10) = f (π) = sin 3 · π 2 + 1 2 ≈ - 0 . 5 7 π 10

4 π 5 9 π 10 π f (x i) 1 . 207107 0 . 809017 0 . 343566 - 0 . 087785 - 0 . 391007 - 0 . 5

Осталось подставить значения в формулу решения методом парабол и получим

∫ 0 π sin 3 x 2 + 1 2 ≈ h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n) = = π 30 · 0 , 5 + 4 · 0 . 953990 + 1 . 487688 + 1 . 207107 + + 0 . 343566 - 0 . 391007 + 2 · 1 . 309017 + 1 . 451056 + + 0 . 809017 - 0 . 87785 - 0 . 5 = = 2 . 237650

Метод Симпсона позволяет нам получать приближенное значение определенного интеграла ∫ 0 π sin 3 x 2 + 1 2 d x ≈ 2 . 237 с точностью до 0 , 001 .

При вычислении формулой Ньютона-Лейбница получим в результате

∫ 0 π sin 3 x 2 + 1 2 d x = - 2 3 cos 3 x 2 + 1 2 x 0 π = = - 3 2 cos 3 π 2 + π 2 - - 2 3 cos 0 + 1 2 · 0 = π 2 + 2 3 ≈ 2 . 237463

Ответ: ∫ 0 π sin 3 x 2 + 1 2 d x ≈ 2 . 237

Замечание

В большинстве случаях нахождение m a x [ a ; b ] f (4) (x) проблематично. Поэтому применяется альтернатива – метод парабол. Его принцип подробно разъясняется в разделе метода трапеций. Метод парабол считается предпочтительным способом для разрешения интеграла. Вычислительная погрешность влияет на результат n . Чем меньше его значение, тем точнее приближенное искомое число.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Остаточный член квадратурной формулы Симпсона равен , где ξ∈(x 0 ,x 2) или

Назначение сервиса . Сервис предназначен для вычисления определенного интеграла по формуле Симпсона в онлайн режиме.

Инструкция . Введите подынтегральную функцию f(x) , нажмите Решить. Полученное решение сохраняется в файле Word . Также создается шаблон решения в Excel .

Правила ввода функции

Примеры правильного написания F(x):
1) 10 x e 2x ≡ 10*x*exp(2*x)
2) x e -x +cos(3x) ≡ x*exp(-x)+cos(3*x)
3) x 3 -x 2 +3 ≡ x^3-x^2+3

Вывод формулы Симпсона

Из формулы
при n = 2 получаем

Т.к. x 2 -x 0 = 2h, то имеем . (10)
Это формула Симпсона . Геометрически это означает, что кривую y=f(x) мы заменяем параболой y=L 2 (x), проходящей через три точки: M 0 (x 0 ,y 0), M 1 (x 1 ,y 1), M 2 (x 2 ,y 2).

Остаточный член формулы Симпсона равен


Предположим, что y∈C (4) . Получим явное выражение для R . Фиксируя среднюю точку x 1 и рассматривая R=R(h) как функцию h, будем иметь:
.
Отсюда дифференцируя последовательно три раза по h , получим






Окончательно имеем
,
где ξ 3 ∈(x 1 -h,x 1 +h). Кроме того, имеем: R(0) = 0, R"(0)=0. R""(0)=0. Теперь, последовательно интегрируя R"""(h), используя теорему о среднем, получим


Таким образом, остаточный член квадратурной формулы Симпсона равен
, где ξ∈(x 0 ,x 2). (11)
Следовательно, формула Симпсона является точной для полиномов не только второй, но и третьей степени.
Получим теперь формулу Симпсона для произвольного интервала [a ,b ]. Пусть n = 2m есть четное число узлов сетки {x i }, x i =a+i·h, i=0,...,n, и y i =f(x i). Применяя формулу Симпсона (10) к каждому удвоенному промежутку , ,..., длины 2h , будем иметь


Отсюда получаем общую формулу Симпсона
.(12)
Ошибка для каждого удвоенного промежутка (k=1,...,m) дается формулой (11).

Т.к. число удвоенных промежутков равно m , то

С учетом непрерывности y IV на [a ,b ], можно найти точку ε, такую, что .
Поэтому будем иметь
. (13)
Если задана предельно допустимая погрешность ε, то, обозначив , получим для определения шага h
.
На практике вычисление R по формуле (13) бывает затруднительным. В этом случае можно поступить следующим образом. Вычисляем интеграл I(h)=I 1 с шагом h , I(2h)=I 2 с шагом 2h и т.д. и вычисляем погрешность Δ:
Δ = |I k -I k-1 | ≤ ε. (14)
Если неравенство (14) выполняется (ε - заданная погрешность), то за оценку интеграла берут I k = I(k·h).
Замечание. Если сетка неравномерная, то формула Симпсона приобретает следующий вид (получить самостоятельно)
.
Пусть число узлов n = 2m (четное). Тогда

где h i =x i -x i-1 .

Пример №1 . С помощью формулы Симпсона вычислить интеграл , приняв n = 10.
Решение: Имеем 2m = 10. Отсюда . Результаты вычислений даны в таблице:

i x i y 2i-1 y 2i
0 0 y 0 = 1.00000
1 0.1 0.90909
2 0.2 0.83333
3 0.3 0.76923
4 0.4 0.71429
5 0.5 0.66667
6 0.6 0.62500
7 0.7 0.58824
8 0.8 0.55556
9 0.9 0.52632
10 1.0 y n =0.50000
σ 1 σ 2

По формуле (12) получим .
Рассчитаем погрешность R=R 2 . Т.к. , то .
Отсюда max|y IV |=24 при 0≤x≤1 и, следовательно . Таким образом, I = 0.69315 ± 0.00001.

Пример №2 . В задачах вычислить определенный интеграл приближенно по формуле Симпсона, разбив отрезок интегрирования на 10 равных частей. Вычисления производить с округлением до четвертого десятичного знака.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Уже в 10 классе я задумываюсь о том, мне нужно будет сдавать профильный ЕГЭ по математике. Решая задания ЕГЭ, я столкнулся с заданиями на нахождение объема многогранников и тел вращения, хотя это задания из программы 11 класса. Заинтересовавшись этим вопросом, я узнал, что в связи с многообразием геометрических фигур тел существует огромное количество формул для нахождения площадей и объёма (на каждуюфигуруи каждое тело приходится своя формула). Рассматривая формулы по геометрии, я убедился, что огромное количество формул связано с площадями и объемами фигур. Таких формул более двенадцати по площадям плоских фигур и более десяти по объемам пространственных тел.

И я задался вопросом : а существует ли такая универсальная формула для нахождения площади и объёма геометрических фигур и тел?

Я считаю тему данного проекта актуальной не только среди учащихся, но и среди взрослых, т.к. школьная программа со временем забывается, и мало кому известно о том, что существует такая формула, которая объединила в себе все другие многочисленные и тяжело запоминающие формулы для нахождения объёма.

Проблема

Необходимо ввести в преподавание геометрии универсальную формулу, позволяющую заменить большое количество формул площадей плоских фигур и объемов пространственных тел.

Гипотеза

В XYIII веке английский математик Томас Симпсон вывел формулу для нахождения некоторых площадей плоских фигур и объемов пространственных тел через вычисление площадей нижнего, верхнего и среднего основания.

Я предполагаю, что данная универсальная формула позволит заменить все названные формулы и позволит легко их запомнить.

Цель работы: доказать, что универсальная формула Симпсона может заменить все изучаемые формулы площадей и объемов в школьном курсе геометрии и ей можно пользоваться не только на практике, но и на экзаменах, в том числе и на ЕГЭ.

Задачи работы:

Изучить основные характеристики геометрических тел стереометрии: призмы, пирамиды, конуса, цилиндра, шара;

Изучить имеющуюся литературу по данной теме.

Используя универсальную формулу, вывести формулы площадей и объемов для всех фигур и тел.

Сравнить полученные формулы с формулами, предлагаемыми в учебнике.

Ознакомить учащихся старших классов с этой формулой и выяснить с помощью анкетирования, удобно ли применять её при подготовкек экзаменам.

Практическая значимость моей работы: Результаты данной работы могут иметь применение в школьной практике, а именно использоваться на занятиях по геометрии и алгебре, при подготовке и сдаче ЕГЭ.

Глава 1 Краткие характеристики свойств геометрических тел

Школьный курс геометрии делится на планиметрию и стереометрию. С 7 по 9 класс я изучал свойства фигур на плоскости, в том числе и формулы для нахождения их площадей (Приложение 1-2).

В курсе 10 класса я начал изучать раздел геометрии-стереометрия, в котором изучаются свойства фигур в пространстве. При написании работы, я рассмотрел геометрические тела и их поверхности. Объёмные геометрические тела делятся на многогранники и тела вращения.

Многогранник - поверхность, составленная из многоугольников и ограничивающая некоторое геометрическое тело.

Тела вращения - геометрические тела, полученные путём вращения вокруг своей оси. Тела вращения: цилиндр, конус, шар.

Многогранники бывают выпуклые и невыпуклые. Выпуклые многогранники - расположены по одну сторону от плоскости каждой грани. Невыпуклые многогранники - расположены по обе стороны от плоскости хотя бы одной грани.

Пирамида

Параллелепипед

Глава 2. Формула Симпсона

Томас Симпсон (20 августа1710 - 14 мая1761) - английскийматематик. В 1746 году Симпсон избран в членыЛондонского королевского общества, а ранее - в члены основанного в 1717 году в Лондоне Математического общества. В 1758 избран иностранным членомШведской королевской академии наук. Назначенный профессором вКоролевскую военную академиювВулидже, Симпсон составил учебники поэлементарной математике. В особых отделахгеометриирассматриваются задачи о наибольших и наименьших величинах, решаемые с помощью элементарной геометрии,правильные многогранники, измерение поверхностей, объёмы тел и, наконец, смешанные задачи.

Замечательная формула существует; более того: она пригодна не только для вычисления объема цилиндра, полного конуса и усеченного конуса, но также и для всякого рода призм, пирамид полных и усеченных и даже для шара, а так же для вычисления площадей плоских фигур. Вот эта формула, известная в математике под названием формулы Симпсона:

где b 1 - площадь (длина) нижнего основания

b 2 - площадь (длина) среднего основания

b 3 - площадь (длина) верхнего основания

2.1 Применение формулы Симпсона для вывода формул площадей плоских фигур.

Наша универсальная формула.b 1 = b 2 =b 3 , тогда получаем:

Ответ: S= hb 1

Вывод. Действительно, площадь параллелограмма равна произведению основания на высоту.

Универсальная формула.

Так какАВСД-трапеция, то b 2 -ее средняя линия, значит

Тогда получаем:

Вывод. Действительно, площадь трапеции равна половине произведения двух оснований на высоту.

Проведя аналогичные доказательства (Приложение 3-4) для формул площадей треугольника, прямоугольника, квадрата и ромба, я пришел к выводу, что универсальная формула Симпсона подошла для вычисления площадей таких плоских фигур как: параллелограмм, трапеция, треугольник, квадрат, ромб, прямоугольник.

2.2. Применение формулы Симпсона для вывода формул объемов пространственных тел.

Так какb 1 =b 2 =b 3 , тогда получаем:

Ответ: V=b 1 h

Доказательство, предложенное в учебнике геометрии авт. Л.С.Атанасяна в Приложении 6.

Вывод. Действительно, объем призмы равен произведению площади основания на высоту. Аналогично проводится доказательство выведения формулы объема цилиндра (Приложение 5)

Решение:Так как b 1 =0, а,то тогда получаем:

Доказательство, предложенное в учебнике геометрии авт. Л.С.Атанасяна в Приложении 9.

Вывод. Действительно, объем конуса равен одной трети произведения площади основания на высоту.Аналогично проводится доказательство выведения формулы объема пирамиды (Приложение 5)

Тогда получаем:

Вывод. Выведенная формула полностью совпадает с формулой, предложенной в учебнике

Задача 6. Объем шара.

Дано: шар

b 3 - площадь верхнего основании

Найти: Vшара.

(Рис. 11.Шар)

Так какb 1 =b 3 =0, h=2R

Тогда получаем:

Доказательство, предложенное в учебнике геометрии авт. Л.С.Атанасяна в Приложении 10

Вывод: Формулы объемов всех пространственных тел, изучаемые в 11-м классе, также легко выводятся с помощью универсальной формулы Симпсона.

2.3 Практическое применение формулы

Следующим этапом моего исследования является практическое применение (см.Приложение 11-12)

Вывод. Объемы для каждой модели геометрических тел, найденные двумя способами, оказались равны. Формула Симпсона универсальна для таких тел, как пирамида, цилиндр, шар, куб и конус.

Я располагаю формулой, по которой можно приближенно вычислить объем ствола дерева, не задаваясь вопросом о том, на какое геометрическое тело оно похоже: на цилиндр, на полный конус или на усеченный конус. Зная плотности различных пород древесины, можно вычислить вес дерева на корню. Я решил эту задачу с помощью вычисления объема ствола, как объем цилиндра, диаметр основания которого равен диаметру ствола посредине длины: при этом результат получается, однако, преуменьшенный, иногда на 12 %. Без большой ошибки можно принимать объем дерева на корню половину объема цилиндра той же высоты с диаметром, равным поперечнику дерева на высоте груди.

Проделав расчеты, по известным нам ранее формулам, я вычислил объем ствола дерева на корню (см. Приложение 13)

Вывод. Из всего исследования можно сделать вывод о том, что я располагаю формулой, по которой можно приближённо вычислить объём ствола дерева и, зная плотность различных пород древесины, можно определить вес дерева на корню.

Глава 3. Анкетирование учащихся

3.1 Исследование и опрос

Среди учащихся 11-х классов я провел исследование (см.Приложение 13).

Цель исследования: определение количества формул, которые учащиеся могут воспроизвести без повторения за 10 минут, т.е. объема «остаточных» формул.

Результаты оказались следующими (см.Приложение 14):

Наибольшее количество воспроизведенных формул - 41, наименьшее - 5. Учитывая то, что количество формул могло достигать 500 за неограниченное время, я пришел к выводу, что огромное количество формул, изучаемых в школе, учащиеся не помнят. Воспроизведенные формулы составляют лишь 8,2 % от общего количества изученных формул. Чаще всего учащиеся воспроизводили формулы по алгебре (формулы тригонометрии, логарифмические формулы, формулы сокращенного умножения, формула корней квадратного уравнения, производные); по геометрии (формулы площадей плоских фигур, некоторые объемы пространственных тел); несколько формул по физике (формула кинетической энергии, силы тяжести, силы трения и МКТ); по информатике () Это было естественно, т.к. в математике формул больше, чем в любой другой науке.

Увидев полученные результаты, я решил определить причины столь низкого результата. Мною был проведен опрос (см. приложение 14-15) учащихся 11-х классов, в котором предлагалось ответить на следующие вопросы:

Вопросы анкеты.

Как Вы считаете, сколько примерно формул должен знать выпускник школы?

А) зазубривание

Б) понимание

В) метод ассоциаций

Г) другое

Результаты оказались следующими (см.Приложение 15).

Вопрос 1. От 60 до 250 формул

Вопрос 2 . Из полученных ответов можно сделать вывод, что учащиеся 11-х классов при заучивании формул стараются их понять или применяют зазубривание.

Вопрос 3. Мнение учащихся по данному вопросу разошлись, хотя по диаграмме видно, что в основном отвечали «да», т.е. учащиеся считают, что количество формул для запоминания соответствуют уровню памяти среднего ученика.

Вопрос 4 .Почти все учащиеся 11-х классов хотели бы использовать вместо множества формул только одну - универсальную.

3.2 Тестирование

Теперь я знаю, что формула Симпсона действительно универсальна, и её вполне можно применять в жизни. Но действительно ли она так необходима? Чтобы ответить на этот вопрос, я представил формулу на уроке 11 классу, после чего провел тестирование (см. приложение 16-17), и получил следующие результаты:

Тест № 1

23% признались, что им трудно запомнить все формулы.

17% сказали, что выучить все формулы им не составляет труда, в том числе и формулу Симпсона.

60% учащихся применяли формулу Симпсона у некоторых геометрических тел, и она им помогла в решении задач.

Тест № 2

100% утверждают, что формула Симпсона запоминается им легко.

0% признались, что испытывают некоторые трудности в её запоминании.

Тест № 3

76% будут применять эту формулу в дальнейшем.

24% признались, что она им вряд ли понадобится.

Тест № 4

82% считают, что формулу Симпсона стоит включить в школьную программу.

0% считают, что формулу не стоит включать в школьную программу.

18% утверждают, что формулу стоит включить в школьную программу, но только в профильных классах.

Тест № 5

35% считают, что помнить одну формулу для определения объёма сразу нескольких геометрических тел гораздо проще.

59% считают, что следует помнить все формулы, включая формулу Симпсона, ведь никогда не знаешь, какие условия будут даны.

6% считают, что достаточно помнить только формулы, включённые в школьную программу.

Эту формулу так же можно применить в решении задач, в том числе и на ЕГЭ. Приведу примеры задач, которые были даны в 11 классе, и которые были решены учениками без труда:

Задача1 Правильная шестиугольная призма с высотой 18см вписана в цилиндр, с радиусом основания 4см. Найдите объём призмы.

Задача2 Правильная четырехугольная пирамида, с высотой 24см и стороной основания 5см, вписана в цилиндр. Найдите объём цилиндра.

Вывод:

Заключение

За время обучения в школе, учащиеся должны знать огромное количество формул по разным предметам. Проведенный мной опрос показал, что не все учащиеся могут запомнить все эти формулы. Я столкнулсяс проблемой: необходимо ввести в преподавание геометрии универсальную формулу, позволяющую заменить большое количество формул площадей плоских фигур и объемов пространственных тел, т.е формулу, пригодную для многих целей, выполняющую разнообразные функции.

Я предположил, что формула английского математика Томаса Симпсона

позволит заменить формулы площадей фигур и объемов тел одной формулой.

Я поставил перед собой цель: доказать, что универсальная формула Симпсона может заменить все изучаемые формулы площадей и объемов в школьном курсе геометрии. Эту цель я раскрыл в нескольких задачах.

В результате своей работы я убедился, что формула Симпсона позволяет легко и быстро доказать теоремы об объемах тел, не применяя определенный интеграл.

Для того, чтобы облегчить работу по запоминанию и выводу формул, я предлагаю перед изучением темы «Площади фигур» учителю познакомить учащихся с формулой Симпсона, и предложить самостоятельно вывести изучаемые формулы. Доказательство, предложенное в учебнике, можно использовать учителю как дополнительный материал для урока или в качестве домашней работы.

Теперь прогуливаясь по лесу, вам наверно будет, вероятно, интересно определить объём любого дерева. Вычислить сколько в нём кубических метров древесины, а заодно и взвесить его - узнать, можно ли было бы, например, увезти такой ствол на одной телеге.

Я располагаю формулой, по которой можно приближенно вычислить объем ствола дерева, не задаваясь вопросом о том, на какое геометрическое тело оно похоже: на цилиндр, на полный конус или на усеченный конус.

Считаю, свою работу полезной, т.к. мною были выведены все формулы площадей и объемов изучаемых в школе.

Из результатов анкетирования я убедился, что формула Симпсона достаточно проста для запоминания, и её стоит включить в школьную программу.

Эту формулу так же можно применять на экзаменах, включая ЕГЭ.

Список использованной литературы:

Я.И.Перельман. Занимательная алгебра. Занимательная геометрия. - М., «АСТ»,1999.

CD-ROM. Большая энциклопедия Кирилла и Мефодия, 2002.

Л.С. Атанасян и др. Геометрия 10-11 . Учебник для общеобразовательных учреждений,- М., «Просвещение», 2002.

https://ru.wikipedia.org/wiki

https://studfiles.net/preview/5433881/page:10/

https://studopedia.ru/6_126004_formula-simpsona.html

https://vuzlit.ru/940376/vyvod_formuly_simpsona

Приложение 1

Краткие характеристики свойств геометрических тел

Треугольник

Приложение 2

Прямоугольник

Приложение 3

b 3 =0, так как верхнее основание является точкой.

Так как b 2 - является в треугольнике средней линией, то, тогда получаем:

Вывод. Действительно, площадь треугольника равна половине произведения основания на высоту.

Решение: - универсальная формула.

Так как АВСД- квадрат, то b 1 =b 2 =b 3 =h, тогда получаем

Приложение 4

Вывод. Действительно, площадь квадрата равна квадрату его стороны.

Решение: - универсальная формула.

Так как АВСД - прямоугольник, то b 1 =b 2 =b 3 , тогда получаем:

Ответ: S=hb 1 .

Вывод. Действительно, площадь прямоугольника равна двух смежных сторон.

Решение: - универсальная формула.

b 1 =b 2 =b 3 , тогда получаем:

Приложение 5

Задача 2. Объем цилиндра.

Дано: Цилиндр

b 1 - площадь нижнего основания:

b 2 -площадь среднего сечения:

b 3 - площадь верхнего основания.

Найти: Vцилиндра

(Рис. 22. Цилиндр)

Т.к. b 1 =b 2 =b 3 , тогда получаем:

Ответ: V=b 1 h

Доказательство, предложенное в учебнике геометрии авт. Л.С.Атанасяна в Приложении 7.

Вывод. Действительно, объем цилиндра равен произведению площади основания на высоту.

Решение:Так как b 3 =0, а, то тогда получаем:

Ответ: Доказательство, предложенное в учебнике геометрии авт. Л.С.Атанасяна в Приложении 8.

Приложение 6

Приложение 7.

Приложение 8

Приложение 9.

Приложение 10

Приложение 11

Задача № 1. Вычисляем объём модели куба по обычной формуле. Для этого измеряем ребро модели куба: а = 10,5 см. V=a 3 = 1157,625 cм 3

Задача № 2. Вычисляем объём модели правильной шестиугольной пирамиды по обычной формуле. Для этого измеряем высоту модели h = 17,2 см и сторону основания а = 6,5 см.

Задача № 3. Вычисляем объём модели цилиндра по обычной формуле. Для этого измеряем высоту модели h = 20,4 см и радиус основания R = 14 см.

Приложение 12

Вычисляем S = π *R 2 = 3,14* 14 2 см 2 ,

V =S*h = 3,14*196*20,4 = 12554,976 cм 3

Вычисляем объем модели по формуле Симпсона

V = h/6(S нижнего основания + S верхнего основания + 4S среднего сечения):

Площади верхнего, нижнего основания и среднего сечения равны между собой S = π *R 2 = 3,14* 14 2 = 615,44см 2 , h= 20,4 см.

V =20,4/6*(20,4+20,4)=12554,976 см 3

Задача № 4. Вычисляем объём модели конуса по обычной формуле. Для этого измеряем высоту модели h = 21 см и радиус основания R = 6 см.

Задача № 5. Вычисляем объём модели шара по обычной формуле. Для этого измеряем радиус шара R = 7 см.

Приложение 13

Расчёт для берёзы :

Расчёт для осины.

Расчёт для сосны.

Приложение 14

Результаты исследования «Определение объема «остаточных» формул»

Диаграмма 1. Определение количества «остаточных» формул.

Диаграмма 2. Предметы, по которым указаны формулы.

Приложение 15

Какой способ для запоминания формул Вы используете?

А) зазубривание

Б) понимание

В) метод ассоциаций

Г) другое

Диаграмма 3. Методы запоминания формул

Считаете ли Вы, что количество формул для заучивания соответствует уровню памяти среднего ученика?

Диаграмма 4. Соответствие количества формул уровню памяти среднего ученика

Считаете ли Вы, что для лучшего запоминания многих формул нужно использовать какую-нибудь одну универсальную формулу?

Диаграмма 5. Необходимость применения универсальной формулы

Приложение 16

Приложение 17

Для нахождения определенного интеграла методом трапеций площадь криволинейной трапеции также разбивается на n прямоугольных трапеций с высотами h и основаниями у 1 , у 2 , у 3 ,..у n , где n - номер прямоугольной трапеции. Интеграл будет численно равен сумме площадей прямоугольных трапеций (рисунок 4).

Рис. 4

n - количество разбиений

Погрешность формулы трапеций оценивается числом

Погрешность формулы трапеций с ростом уменьшается быстрее, чем погрешность формулы прямоугольников. Следовательно, формула трапеций позволяет получить большую точность, чем метод прямоугольников.

Формула Симпсона

Если для каждой пары отрезков построить многочлен второй степени, затем проинтегрировать его на отрезке и воспользоваться свойством аддитивности интеграла, то получим формулу Симпсона.

В методе Симпсона для вычисления определенного интеграла весь интервал интегрирования разбивается на подинтервалы равной длины h=(b-a)/n. Число отрезков разбиения является четным числом. Затем на каждой паре соседних подинтервалов подинтегральная функция f(x) заменяется многочленом Лагранжа второй степени (рисунок 5).

Рис. 5 Функция y=f(x) на отрезке заменяется многочленом 2-го порядка

Рассмотрим подынтегральную функцию на отрезке. Заменим эту подынтегральную функцию интерполяционным многочленом Лагранжа второй степени, совпадающим с y= в точках:

Проинтегрируем на отрезке.:

Введем замену переменных:

Учитывая формулы замены,


Выполнив интегрирование, получим формулу Симпсона:

Полученное для интеграла значение совпадает с площадью криволинейной трапеции, ограниченной осью, прямыми, и параболой, проходящей через точки На отрезке формула Симпсона будет иметь вид:

В формуле параболы значение функции f(x) в нечетных точках разбиения х 1 , х 3 , ..., х 2n-1 имеет коэффициент 4, в четных точках х 2 , х 4 , ..., х 2n-2 - коэффициент 2 и в двух граничных точках х 0 =а, х n =b - коэффициент 1.

Геометрический смысл формулы Симпсона: площадь криволинейной трапеции под графиком функции f(x) на отрезке приближенно заменяется суммой площадей фигур, лежащих под параболами.

Если функция f(x) имеет на непрерывную производную четвертого порядка, то абсолютная величина погрешности формулы Симпсона не больше чем

где М - наибольшее значение на отрезке . Так как n 4 растет быстрее, чем n 2 , то погрешность формулы Симпсона с ростом n уменьшается значительно быстрее, чем погрешность формулы трапеций.

Вычислим интеграл

Этот интеграл легко вычисляется:

Возьмем n равным 10, h=0.1, рассчитаем значения подынтегральной функции в точках разбиения, а также полуцелых точках.

По формуле средних прямоугольников получим I прям =0.785606 (погрешность равна 0.027%), по формуле трапеций I трап =0.784981 (погрешность около 0,054. При использовании метода правых и левых прямоугольников погрешность составляет более 3%.

Для сравнения точности приближенных формул вычислим еще раз интеграл

но теперь по формуле Симпсона при n=4. Разобьем отрезок на четыре равные части точками х 0 =0, х 1 =1/4, х 2 =1/2, х 3 =3/4, х 4 =1 и вычислим приближенно значения функции f(x)=1/(1+x) в этих точках: у 0 =1,0000, у 1 =0,8000, у 2 =0,6667, у 3 =0,5714, у 4 =0,5000.

По формуле Симпсона получаем

Оценим погрешность полученного результата. Для подынтегральной функции f(x)=1/(1+x) имеем: f (4) (x)=24/(1+x) 5 , откуда следует, что на отрезке . Следовательно, можно взять М=24, и погрешность результата не превосходит величины 24/(2880 4 4)=0.0004. Сравнивая приближенное значение с точным, заключаем, что абсолютная ошибка результата, полученного по формуле Симпсона, меньше 0,00011. Это находится в соответствии с данной выше оценкой погрешности и, кроме того, свидетельствует, что формула Симпсона значительно точнее формулы трапеций. Поэтому формулу Симпсона для приближенного вычисления определенных интегралов используют чаще, чем формулу трапеций.