Интеграл с бесконечным верхним пределом. Несобственный интеграл с бесконечным пределом интегрирования

Несобственный интеграл с бесконечным пределом интегрирования

Иногда такой несобственный интеграл еще называют несобственным интегралом первого рода..gif" width="49" height="19 src=">.

Реже встречаются интегралы с бесконечным нижним пределом или с двумя бесконечными пределами: .

Мы рассмотрим самый популярный случай https://pandia.ru/text/80/057/images/image005_1.gif" width="63" height="51">? Нет, не всегда. Подынтегральная функция https://pandia.ru/text/80/057/images/image007_0.gif" width="47" height="23 src=">

Изобразим на чертеже график подынтегральной функции . Типовой график и криволинейная трапеция для данного случая выглядит так:

Несобственный интеграл https://pandia.ru/text/80/057/images/image009_0.gif" width="100" height="51">», иными словами, площадь тоже бесконечна. Так быть может. В этом случае говорят, что, что несобственный интеграл расходится .

2) Но . Как это ни парадоксально прозвучит, площадь бесконечной фигуры может равняться… конечному числу! Например: .. Во втором случае несобственный интеграл сходится .

А что будет, если бесконечная криволинейная трапеция расположена ниже оси?.gif" width="217" height="51 src=">.


: .

Пример 1

Подынтегральная функция https://pandia.ru/text/80/057/images/image017_0.gif" width="43" height="23">, значит, всё нормально и несобственный интеграл можно вычислить «штатным» методом.

Применение нашей формулы https://pandia.ru/text/80/057/images/image018_0.gif" width="356" height="49">

То есть, несобственный интеграл расходится, и площадь заштрихованной криволинейной трапеции равна бесконечности.

При решении несобственных интегралов очень важно знать, как выглядят графики основных элементарных функций!

Пример 2

Вычислить несобственный интеграл или установить его расходимость.

Выполним чертеж:

Во-первых, замечаем следующее: подынтегральная функция непрерывна на полуинтервале . Гуд..gif" width="327" height="53">

(1) Берем простейший интеграл от степенной функции (этот частный случай есть во многих таблицах). Минус лучше сразу вынести за знак предела, чтобы он не путался под ногами в дальнейших вычислениях.

(2) Подставляем верхний и нижний пределы по формуле Ньютона-Лейбница.

(3) Указываем, что https://pandia.ru/text/80/057/images/image024.gif" width="56" height="19 src="> (Господа, это уже давно нужно понимать) и упрощаем ответ.

Вот здесь площадь бесконечной криволинейной трапеции равна конечному числу! Невероятно, но факт.

Пример 3

Вычислить несобственный интеграл или установить его расходимость.

Подынтегральная функция непрерывна на .

Сначала попытаемся найти первообразную функцию (неопределенный интеграл).

На какой из табличных интегралов похожа подынтегральная функция? Напоминает она арктангенс: . Из этих соображений напрашивается мысль, что неплохо бы в знаменателе получить квадрат. Делается это путем замены.

Проведем замену:

Всегда полезно выполнить проверку, то есть продифференцировать полученный результат:

Теперь находим несобственный интеграл:

(1) Записываем решение в соответствии с формулой . Константу лучше сразу вынести за знак предела, чтобы она не мешалась в дальнейших вычислениях.

(2) Подставляем верхний и нижний пределы в соответствии с формулой Ньютона-Лейбница..gif" width="56" height="19 src=">? Смотрите график арктангенса в уже неоднократно рекомендованной статье.

(3) Получаем окончательный ответ. Тот факт, что полезно знать наизусть.

Продвинутые студенты могут не находить отдельно неопределенный интеграл, и не использовать метод замены, а использовать метод подведения функции под знак дифференциала и решать несобственный интеграл «сразу». В этом случае решение должно выглядеть примерно так:



Подынтегральная функция непрерывна на https://pandia.ru/text/80/057/images/image041.gif" width="337" height="104">

Пример 4

Вычислить несобственный интеграл или установить его расходимость.

! Это типовой пример, и похожие интегралы встречаются очень часто. Хорошо его проработайте! Первообразная функция здесь находится методом выделения полного квадрата.

Пример 5

Вычислить несобственный интеграл или установить его расходимость.

Этот интеграл можно решить подробно, то есть сначала найти неопределенный интеграл, проведя замену переменной. А можно решить «сразу» – подведением функции под знак дифференциала..

Несобственные интегралы от неограниченных функций

Иногда такие несобственные интегралы называют несобственными интегралами второго рода. Несобственные интегралы второго рода коварно «шифруются» под обычный определенный интеграл и выглядят точно так же: ..gif" width="39" height="15 src=">, 2) или в точке , 3) или в обеих точках сразу, 4) или даже на отрезке интегрирования. Мы рассмотрим первые два случая, для случаев 3-4 в конце статьи есть ссылка на дополнительный урок.


Сразу пример, чтобы было понятно: https://pandia.ru/text/80/057/images/image048.gif" width="65 height=41" height="41">, то знаменатель у нас обращается в ноль, то есть подынтегральной функции просто не существует в этой точке!

Вообще при анализе несобственного интеграла всегда нужно подставлять в подынтегральную функцию оба предела интегрирования ..jpg" alt="Несобственный интеграл, точка разрыва в нижнем пределе интегрирования" width="323" height="380">

Здесь почти всё так же, как в интеграле первого рода.
Наш интеграл численно равен площади заштрихованной криволинейной трапеции, которая не ограничена сверху. При этом могут быть два варианта: несобственный интеграл расходится (площадь бесконечна) либо несобственный интеграл равен конечному числу (то есть, площадь бесконечной фигуры – конечна!).

Осталось только модифицировать формулу Ньютона-Лейбница. Она тоже модифицируется с помощью предела, но предел стремится уже не к бесконечности, а к значению https://pandia.ru/text/80/057/images/image052.gif" width="28" height="19"> справа .

Пример 6

Вычислить несобственный интеграл или установить его расходимость.

Подынтегральная функция терпит бесконечный разрыв в точке (не забываем устно или на черновике проверить, всё ли нормально с верхним пределом!)

Сначала вычислим неопределенный интеграл:

Замена:

Вычислим несобственный интеграл:

(1) Что здесь нового? По технике решения практически ничего. Единственное, что поменялось, это запись под значком предела: . Добавка обозначает, что мы стремимся к значению справа (что логично – см. график). Такой предел в теории пределов называют односторонним пределом. В данном случае у нас правосторонний предел.

(2) Подставляем верхний и нижний предел по формуле Ньютона Лейбница.

(3) Разбираемся с https://pandia.ru/text/80/057/images/image058.gif" width="69" height="41 src=">. Как определить, куда стремиться выражение? Грубо говоря, в него нужно просто подставить значение , подставляем три четверти и указываем, что . Причесываем ответ.

В данном случае несобственный интеграл равен отрицательному числу.

Пример 7

Вычислить несобственный интеграл или установить его расходимость.

Пример 8

Вычислить несобственный интеграл или установить его расходимость.

Если подынтегральной функции не существует в точке

Бесконечная криволинейная трапеция для такого несобственного интеграла принципиально выглядит следующим образом:

Здесь всё абсолютно так же, за исключением того, что предел у нас стремится к значению https://pandia.ru/text/80/057/images/image052.gif" width="28" height="19"> мы должны бесконечно близко приблизиться к точке разрыва слева .

2 Несобственными интегралами первого рода называются интегралы вида Подынтегральная функция предполагается непрерывной на всем участке интегрирования.

2 Если существует и конечен предел , то говорят, что несобственный интеграл сходится и равен

Аналогично определяются интегралы и :

(8.21)
где а – любое действительное число. Причем про последний интеграл говорят, что он сходится тогда и только тогда, когда сходятся оба составляющих его интеграла.

Задача 8.10.

Решение.

Следовательно, интеграл расходится.

Задача 8.11. Вычислить несобственный интеграл .

Решение.

Данный интеграл сходится.

2 Несобственными интегралами второго рода называются интегралы вида: , где подынтегральная функция f (x ) имеет бесконечные разрывы на конечном отрезке [a ; b ]. Определяются несобственные интегралы второго рода по-разному, в зависимости от расположения точек разрыва на промежутке [a ; b ].

1) Предположим, что функция f (x ) имеет бесконечный разрыв в некоторой внутренней точке области интегрирования (c Î(a ; b )) В остальных точках отрезка [a ; b ] функция предполагается непрерывной.

Тогда, если существуют и конечны пределы и , то говорят, что интеграл сходится и равен

. (8.22)
2) Пусть единственная точка разрыва функции f (x ) совпадает с точкой а

. (8.23)
3) Пусть единственная точка разрыва функции f (x ) совпадает с точкой b . Тогда, если существует и конечен предел , то говорят, что интеграл сходится, и равен

. (8.24)
Всюду предполагается, что e > 0 и d > 0.

Задача 8.12. Вычислить несобственный интеграл .

Решение. x = 2. Следовательно,

Задача 8.13. Вычислить несобственный интеграл .

Решение. Подынтегральная функция имеет разрыв второго рода в точке x = 0 (внутри области интегрирования). Следовательно,

Первый предел существует и конечен, но второй предел равен бесконечности ( при ). Следовательно, данный интеграл расходится.

Глава 9. Функции нескольких переменных

§9.1. Определение n -мерного евклидова пространства R n .

Прежде чем перейти к изучению функций многих переменных полезно ввести понятие n -мерного пространства для любого n = 1, 2, 3,… .

2 Точкой x n -мерного пространства (вектором) называется упорядоченная совокупность n действительных чисел .

Число называется i -ой координатой вектора .

2 Расстояние между двумя точками n -мерного пространства и определяется по формуле:


Расстояние от точки до точки x называется модулем вектора x и обозначается . Из формулы (9.1) следует, что .

В n -мерном пространстве естественным образом вводится понятие скалярного произведения:

Угол между векторами x и y можно определить по формуле:

По прежнему, векторы x и y перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю.

2Совокупность всех точек n -мерного пространства, в котором определено расстояние согласно формуле (9.1) и скалярное произведение, называется n -мерным евклидовым векторным пространством и обозначается через .

В случае n = 1 пространство совпадает с прямой, в случае n = 2 – с плоскостью, а в случае n = 3 – с пространством.

2 Пусть и . Совокупность всех точек таких, что , называется n -мерным шаром с центром в точке x или e -окрестностью точки x в пространстве и обозначается .

В координатной форме это определение выглядит так:

В случае прямой, т.е. при n = 1, окрестность точки представляет из себя интервал с центром в точке радиуса e . В случае плоскости, т.е. при n = 2, окрестность точки представляет из себя открытый круг с центром в точке радиуса e . В случае пространства, т.е. при n = 3 окрестность точки представляет из себя открытый шар с центром в точке радиуса e .

§9.2. Область определения функции нескольких переменных. Непрерывность

2 Функцией n переменных называется такое правило (закон), по которому каждому набору, состоящему из n переменных , взятому из некоторой области D n -мерного пространства , ставится в соответствие единственное число z . В наиболее простом случае .

2 Функцией 2-х переменных называется такое правило (закон), по которому каждой точке M (x ; y ), принадлежащей некоторой области D плоскости xOy , ставится в соответствие единственное число z .

Множество точек в пространстве с координатами образуют некоторую поверхность (рис. 9.1), возвышающуюся над областью D (геометрический смысл функции двух переменных).

2 Область D , для которой построено указанное выше соответствие, называется областью определения функции .

Задача 9.1. Найти область определения функции

Решение. Искомая область определения является множеством точек на плоскости xOy , удовлетворяющих системе неравенств . Неравенства и меняют свой знак на противоположный (соответственно) при пересечении следующих линий: x = y и x = 0, y = 0. Эти линии разбивают плоскость xOy на 6 областей. Последовательно, подставляя произвольные точки, из каждой области в систему , убеждаемся в том, что объединение областей (1) и (3) является областью определения исходной функции. Причем прямая x = y , за исключением точки (0; 0), входит в область определения, а прямые x = 0, и y = 0 – не входят (рис. 9.2).

2 Замыканием области называется множество точек пространства , в любой окрестности каждой из которых содержатся точки области D .

Пусть, например, D – некоторая открытая (граница не включается) область на плоскости xOy . Тогда замыкание области получится, если к области D присоединить ее границу Г .

2 Пусть в некоторой области D плоскости xOy задана функция , и пусть – некоторая точка замыкания области D (). Число А называется пределом функции в точке М 0 , если для любого числа e > 0 найдется такое число δ > 0, что для всех точек , отличных от точки М 0 и удаленных от нее меньше, чем на δ , выполнено неравенство .

2 Функция называется непрерывной в точке если она определена в этой точке () и имеет место равенство .

§9.3. Линии уровня функции двух переменных

2 Линии на плоскости xOy , заданные уравнениями , где С – произвольная константа, называются линиями уровня функции .

Линии уровня являются линиями пересечения поверхности, заданной функцией и плоскости z = C , параллельной плоскости xOy . С помощью линий уровня можно изучать форму поверхности, заданной функцией .

Пример 9.2. Найти линии уровня и определить форму поверхности, заданной уравнением .

Уравнения линий уровня в данном случае имеют вид . При C < 0 уравнение дает пустое множество решений (следовательно, вся поверхность расположена выше плоскости xOy ). При C = 0 уравнению линии уровня удовлетворяет только одна точка x = 0, y = 0 (с плоскостью xOy поверхность пересекается только вначале координат). При C > 0 линии уровня являются эллипсами , с полуосями и . Линии уровня, соответствующие различным значениям С , изображены на рис. 9.3. Поверхность, заданная уравнением , называется эллиптическим параболоидом (рис. 9.4).

§9.4. Частные производные первого порядка

Пусть в некоторой области D плоскости xOy задана функция , и – некоторая точка области D .

x

, (9.2)

2 Частной производной функции в точке по переменной y (обозначается или ) называется

, (9.3)
если данный предел существует и конечен.

2 Частной производной функции n переменных в точке по переменной x i называется

, (9.4)
если данный предел существует и конечен.

Как видно из формул (9.2) – (9.4), частные производные определяются аналогично тому, как определялась производная функции одной переменной. При вычислении предела приращение получает только одна из переменных, остальные переменные приращения не получают и остаются постоянными. Следовательно, частные производные можно вычислять по тем же правилам, что и обычные производные, обращаясь со всеми свободными переменными (кроме той, по которой производится дифференцирование) как с константами.

Задача 9.3. Найти частные производные функции

Решение. .

Задача 9.4. Найти частные производные функции .

Решение. При дифференцировании данной функции по переменной x мы пользуемся правилом дифференцирования степенной функции, а при нахождении частной производной по переменной y – правилом дифференцирования показательной функции:

Задача 9.5. Вычислить частные производные функции в точке .

Решение. Применяя правило дифференцирования сложной функции, найдем частные производные

Подставляя в частные производные координаты точки М , получим

§9.5. Градиент функции нескольких переменных.
Производная по направлению

2 Градиентом функции в точке называется вектор, составленный из частных производных данной функции, вычисленных в данной точке:

2 Производной функции в точке по направлению вектора называется проекция вектора градиента данной функции, вычисленного в точке М 0 , на данное направление

Вычисляя проекцию вектора на вектор в соответствие с формулой (2.6), получим

. (9.7)
Замечая, что , где a – угол, который вектор образует с осью OX , получим еще одну формулу для вычисления производной по направлению вектора

Задача 9.6. Найти градиент функции в точке М 0 (4; 2) и производную по направлению вектора

Решение. Найдем частные производные

Вычислим значения частных производных в точке М 0:

Градиент функции в точке М 0 найдем по формуле (9.5):

Задача 9.7. В точке М 0 (0; 1) вычислить производную функции по направлению биссектрисы второго координатного угла.

Решение. Найдем частные производные функции :

Вычислим значения частных производных и градиент функции в точке М 0:

Производную функции в точке М 0 по направлению биссектрисы второго координатного угла (данное направление составляет с осью OX угол a = 135°) найдем по формуле (9.8):

§9.6. Дифференциал функции нескольких переменных
и его применение к приближенным вычислениям

1 Если в точке функция имеет непрерывные частные производные и , то ее полное приращение при переходе от точки М 0 к точке может быть представлено в виде:

, (9.9)
где при , .

2 Выражение называется полным дифференциалом функции в точке .

Из формулы (9.9) следует, что дифференциал функции является главной линейной частью полного приращения функции . При достаточно млых Dx и Dy выражение существенно меньше дифференциала и им можно пренебречь. Таким образом, мы приходим к следующей приближенной формуле:

. (9.10)
Замечание. Формулой (9.10) можно пользоваться для приближенного вычисления значений функций только в точках , достаточно близких к точке . Чем меньше значение , тем точнее значение , найденное по формуле (9.9).

Пример 9.8. Вычислить приближенно, с помощью дифференциала.

Рассмотрим функцию . Требуется вычислить значение z 1 этой функции в точке (x 1 ; y 1) = (0,09; 6,95). Воспользуемся приближенной формулой (9.9), выбрав в качестве точки точку (0; 7). Тогда Dx = x 1 – x 0 = 0,09 – 0 = 0,09, Dy = y 1 – y 0 = 6,95 – 7 = – 0,05.

Следовательно,

§9.7. Частные производные высших порядков

Пусть в области D задана функция , имеющая в этой области непрерывные частные производные и . Таким образом, в области D мы получили две новые непрерывные функции двух переменных и . Если в некоторой точке области D функции и имеют частные производные как по переменной x , так и по переменой y , то эти производные называются производными второго порядка функции . Они обозначаются следующим образом:

1 Если в некоторой точке области D функция имеет непрерывные смешанные производные и , то в точке эти производные равны: . D , необходимо выполнение условий: D = 32 – 9 = 23.

Так как дискриминант больше нуля, то в точке М функция имеет экстремум. А именно, локальный минимум, поскольку А и С больше нуля. При этом

Вы еще здесь? =) Нет, я никого не пытался запугать, просто тема несобственных интегралов – очень хорошая иллюстрация тому, как важно не запускать высшую математику и другие точные науки. Для освоения урока на сайте всё есть – в подробной и доступной форме, было бы желание….

Итак, начнем-с. Образно говоря, несобственный интеграл – это «продвинутый» определенный интеграл, и на самом деле сложностей с ними не так уж и много, к тому же у несобственного интеграла есть очень хороший геометрический смысл.

Что значит вычислить несобственный интеграл?

Вычислить несобственный интеграл – это значит, найти ЧИСЛО (точно так же, как в определенном интеграле), или доказать, что он расходится (то есть, получить в итоге бесконечность вместо числа).

Несобственные интегралы бывают двух видов.

Несобственный интеграл с бесконечным пределом (ами) интегрирования

Иногда такой несобственный интеграл называют несобственным интегралом первого рода . В общем виде несобственный интеграл с бесконечным пределом чаще всего выглядит так: . В чем его отличие от определенного интеграла? В верхнем пределе. Он бесконечный: .

Реже встречаются интегралы с бесконечным нижним пределом или с двумя бесконечными пределами: , и их мы рассмотрим позже – когда войдёте во вкус:)

Ну а сейчас разберём самый популярный случай . В подавляющем большинстве примеров подынтегральная функция непрерывна на промежутке , и этот важный факт следует проверять в первую очередь! Ибо если есть разрывы, то есть дополнительные нюансы. Для определённости предположим, что и тогда типичная криволинейная трапеция будет выглядеть так:


Обратите внимание, что она бесконечна (не ограничена справа), и несобственный интеграл численно равен её площади . При этом возможны следующие варианты:

1) Первая мысль, которая приходит в голову: «раз фигура бесконечная, то », иными словами, площадь тоже бесконечна. Так быть может. В этом случае говорят, что несобственный интеграл расходится .

2) Но . Как это ни парадоксально прозвучит, площадь бесконечной фигуры может равняться… конечному числу! Например: . Может ли так быть? Запросто. Во втором случае несобственный интеграл сходится .

3) О третьем варианте чуть позже.

В каких случаях несобственный интеграл расходится, а в каком сходится? Это зависит от подынтегральной функции , и конкретные примеры мы очень скоро рассмотрим.

А что будет, если бесконечная криволинейная трапеция расположена ниже оси? В этом случае, несобственный интеграл (расходится) либо равен конечному отрицательному числу.

Таким образом, несобственный интеграл может быть отрицательным .

Важно! Когда Вам для решения предложен ЛЮБОЙ несобственный интеграл, то, вообще говоря, ни о какой площади речи не идет и чертежа строить не нужно . Геометрический смысл несобственного интеграла я рассказал только для того, чтобы легче было понять материал.

Коль скоро, несобственный интеграл очень похож на определенный интеграл, то вспомним формулу Ньютона- Лейбница: . На самом деле формула применима и к несобственным интегралам, только ее нужно немного модифицировать. В чем отличие? В бесконечном верхнем пределе интегрирования: . Наверное, многие догадались, что это уже попахивает применением теории пределов, и формула запишется так: .

В чем отличие от определенного интеграла? Да ни в чем особенном! Как и в определенном интеграле, нужно уметь находить первообразную функцию (неопределенный интеграл), уметь применять формулу Ньютона-Лейбница. Единственное, что добавилось – это вычисление предела. У кого с ними плохо, изучите урок Пределы функций. Примеры решений , ибо лучше поздно, чем в армии.

Рассмотрим два классических примера:

Пример 1

Для наглядности я построю чертеж, хотя, еще раз подчеркиваю, на практике строить чертежи в данном задании не нужно .

Подынтегральная функция непрерывна на полуинтервале , значит, всё нормально и несобственный интеграл можно вычислить «штатным» методом.

Применение нашей формулы и решение задачи выглядит так:

То есть, несобственный интеграл расходится, и площадь заштрихованной криволинейной трапеции равна бесконечности.

В рассмотренном примере у нас простейший табличный интеграл и такая же техника применения формулы Ньютона-Лейбница, как в определенном интеграле. Но применятся эта формула под знаком предела. Вместо привычной буквы «динамической» переменной выступает буква «бэ». Это не должно смущать или ставить в тупик, потому что любая буква ничем не хуже стандартного «икса».

Если Вам не понятно почему при , то это очень плохо, либо Вы не понимаете простейшие пределы (и вообще не понимаете, что такое предел), либо не знаете, как выглядит график логарифмической функции. Во втором случае посетите урок Графики и свойства элементарных функций .

При решении несобственных интегралов очень важно знать, как выглядят графики основных элементарных функций!

Чистовое оформление задания должно выглядеть примерно так:



! При оформлении примера всегда прерываем решение, и указываем, что происходит с подынтегральной функцией непрерывна она на промежутке интегрирования или нет . Этим мы идентифицируем тип несобственного интеграла и обосновываем дальнейшие действия.

Пример 2

Вычислить несобственный интеграл или установить его расходимость.

Выполним чертеж:

Во-первых, замечаем следующее: подынтегральная функция непрерывна на полуинтервале . Гуд. Решаем с помощью формулы :

(1) Берем простейший интеграл от степенной функции (этот частный случай есть во многих таблицах). Минус лучше сразу вынести за знак предела, чтобы он не путался под ногами в дальнейших вычислениях.

(2) Подставляем верхний и нижний пределы по формуле Ньютона-Лейбница.

(3) Указываем, что при (Господа, это уже давно нужно понимать) и упрощаем ответ.

Вот здесь площадь бесконечной криволинейной трапеции равна конечному числу! Невероятно, но факт.

Чистовое оформление примера должно выглядеть примерно так:



Подынтегральная функция непрерывна на

Что делать, если вам встретится интеграл наподобие – с точкой разрыва на интервале интегрирования? Это говорит о том, что в примере опечатка (вероятнее всего) , либо о продвинутом уровне обучения. В последнем случае, в силу свойства аддитивности , следует рассмотреть два несобственных интеграла на промежутках и и затем разобраться с суммой.

Иногда вследствие опечатки либо умысла несобственного интеграла может вовсе не существовать , так, например, если в знаменатель вышеуказанного интеграла поставить квадратный корень из «икс», то часть промежутка интегрирования вообще не войдёт в область определения подынтегральной функции.

Более того, несобственного интеграла может не существовать даже при всём «видимом благополучии». Классический пример: . Несмотря на определённость и непрерывность косинуса, такого несобственного интеграла не существует! Почему? Всё очень просто, потому что:
– не существует соответствующего предела .

И такие примеры пусть редко, но встречаются на практике! Таким образом, помимо сходимости и расходимости, есть ещё и третий исход решения с полноправным ответом: «несобственного интеграла не существует».

Следует также отметить, что строгое определение несобственного интеграла даётся именно через предел, и желающие могут ознакомиться с ним в учебной литературе. Ну а мы продолжаем практическое занятие и переходим к более содержательным задачам:

Пример 3

Вычислить несобственный интеграл или установить его расходимость.

Сначала попытаемся найти первообразную функцию (неопределенный интеграл). Если нам не удастся этого сделать, то несобственный интеграл мы, естественно, тоже не решим.

На какой из табличных интегралов похожа подынтегральная функция? Напоминает она арктангенс: . Из этих соображений напрашивается мысль, что неплохо бы в знаменателе получить квадрат. Делается это путем замены.

Проведем замену:

Неопределенный интеграл найден, константу в данном случае добавлять не имеет смысла.

На черновике всегда полезно выполнить проверку, то есть продифференцировать полученный результат:

Получена исходная подынтегральная функция, значит, неопределенный интеграл найден правильно.

Теперь находим несобственный интеграл:

(1) Записываем решение в соответствии с формулой . Константу лучше сразу вынести за знак предела, чтобы она не мешалась в дальнейших вычислениях.

(2) Подставляем верхний и нижний пределы в соответствии с формулой Ньютона-Лейбница. Почему при ? Смотрите график арктангенса в уже неоднократно рекомендованной статье.

(3) Получаем окончательный ответ. Тот факт, что полезно знать наизусть.

Продвинутые студенты могут не находить отдельно неопределенный интеграл, и не использовать метод замены, а использовать метод подведения функции под знак дифференциала и решать несобственный интеграл «сразу». В этом случае решение должно выглядеть примерно так:



Подынтегральная функция непрерывна на .

Пример 4

Вычислить несобственный интеграл или установить его расходимость.

! Это типовой пример, и похожие интегралы встречаются очень часто. Хорошо его проработайте! Первообразная функция здесь находится методом выделения полного квадрата, более подробно с методом можно ознакомиться на уроке Интегрирование некоторых дробей .

Пример 5

Вычислить несобственный интеграл или установить его расходимость.

Этот интеграл можно решить подробно, то есть сначала найти неопределенный интеграл, проведя замену переменной. А можно решить «сразу» – подведением функции под знак дифференциала. У кого какая математическая подготовка.

Полные решения и ответы в конце урока.

Примеры решений несобственных интегралов с бесконечным нижним пределом интегрирования можно посмотреть на странице Эффективные методы решения несобственных интегралов . Там же разобран случай, когда оба предела интегрирования бесконечны.

Несобственные интегралы от неограниченных функций

Или несобственные интегралами второго рода . Несобственные интегралы второго рода коварно «шифруются» под обычный определенный интеграл и выглядят точно так же: Но, в отличие от определенного интеграла, подынтегральная функция терпит бесконечный разрыв (не существует): 1) в точке , 2) или в точке , 3) или в обеих точках сразу, 4) или даже на отрезке интегрирования. Мы рассмотрим первые два случая, для случаев 3-4 в конце статьи есть ссылка на дополнительный урок.

Сразу пример, чтобы было понятно: . Вроде бы это определенный интеграл. Но на самом деле – это несобственный интеграл второго рода, если мы подставим в подынтегральную функцию значение нижнего предела , то знаменатель у нас обращается в ноль, то есть подынтегральной функции просто не существует в этой точке!

Вообще при анализе несобственного интеграла всегда нужно подставлять в подынтегральную функцию оба предела интегрирования . В этой связи проверим и верхний предел: . Здесь всё хорошо.

Криволинейная трапеция для рассматриваемой разновидности несобственного интеграла принципиально выглядит так:

Здесь почти всё так же, как в интеграле первого рода.

Наш интеграл численно равен площади заштрихованной криволинейной трапеции, которая не ограничена сверху. При этом могут быть два варианта*: несобственный интеграл расходится (площадь бесконечна) либо несобственный интеграл равен конечному числу (то есть, площадь бесконечной фигуры – конечна!).

* по умолчанию привычно полагаем, что несобственный интеграл существует

Осталось только модифицировать формулу Ньютона-Лейбница. Она тоже модифицируется с помощью предела, но предел стремится уже не к бесконечности, а к значению справа. Легко проследить по чертежу: по оси мы должны бесконечно близко приблизиться к точке разрыва справа .

Посмотрим, как это реализуется на практике.

Пример 6

Вычислить несобственный интеграл или установить его расходимость.

Подынтегральная функция терпит бесконечный разрыв в точке (не забываем устно или на черновике проверить, всё ли нормально с верхним пределом!)

Сначала вычислим неопределенный интеграл:

Замена:

У кого возникли трудности с заменой, обратитесь к уроку Метод замены в неопределенном интеграле .

Вычислим несобственный интеграл:

(1) Что здесь нового? По технике решения практически ничего. Единственное, что поменялось, это запись под значком предела: . Добавка обозначает, что мы стремимся к значению справа (что логично – см. график). Такой предел в теории пределов называют односторонним пределом . В данном случае у нас правосторонний предел .

(2) Подставляем верхний и нижний предел по формуле Ньютона Лейбница.

(3) Разбираемся с при . Как определить, куда стремится выражение? Грубо говоря, в него нужно просто подставить значение , подставляем три четверти и указываем, что . Причесываем ответ.

В данном случае несобственный интеграл равен отрицательному числу. В этом никакого криминала нет, просто соответствующая криволинейная трапеция расположена под осью .

А сейчас два примера для самостоятельного решения.

Пример 7

Вычислить несобственный интеграл или установить его расходимость.

Пример 8

Вычислить несобственный интеграл или установить его расходимость.

Если подынтегральной функции не существует в точке

Бесконечная криволинейная трапеция для такого несобственного интеграла принципиально выглядит следующим образом.

Рассмотрим два вида несобственных интервалов:

  • 1. Несобственные интегралы I-го рода с бесконечными пределами интегрирования;
  • 2. Несобственные интегралы II-го рода от функций с бесконечными разрывами.

Несобственные интегралы первого рода с бесконечными пределами интегрирования

Определение: Интегралы вида: называются несобственными интегралами I-го рода с бесконечными пределами, которые определяются с помощью пределов:


Определение Несобственные интегралы называются сходящимися, если существуют конечные пределы, с помощью которых эти интегралы определяются.

Несобственные интегралы называются расходящимися, если эти пределы не существуют или бесконечные.

Действительно, пусть функция f(x) определена и непрерывна при любом значении x=в из полубесконечного отрезка функций имеем:

Он сходится к 1. Тогда согласно теореме 1 несобственный интеграл от меньшей функции: также сходится и его значение меньше 1.

Теорема 2. Если для знакоположительных функций, для которых выполняется неравенство 0?g(x)?f(x), при любых х? а, несобственный интеграл от меньшей функции расходится, то расходится и несобственный интеграл от большей функции.

Пример. Исследовать сходимость интеграла:

Решение. Сравним подинтегральную функцию с функцией. Для знакоположительных на интервале , а отрезок интегрирования является конечным, то есть ограничен числами, а не бесконечностью. Некоторые задачи приводят к необходимости отказаться от этих ограничений. Так появляются несобственные интегралы.

Геометрический смысл несобственного интеграла выясняется довольно просто. В случае, когда график функции y = f (x ) находится выше оси Ox , определённый интеграл выражает площадь криволинейной трапеции, ограниченной кривой y = f (x ) , осью абсцисс и ординатами x = a , x = b . В свою очередь несобственный интеграл выражает площадь неограниченной (бесконечной) криволинейной трапеции, заключённой между линиями y = f (x ) (на рисунке ниже - красного цвета), x = a и осью абсцисс.

Аналогичным образом определяются несобственные интегралы и для других бесконечных интервалов:

Площадь бесконечной криволинейной трапеции может быть конечным числом и в этом случае несобственный интеграл называется сходящимся. Площадь может быть и бесконечностью и в этом случае несобственный интеграл называется расходящимся.

Использование предела интеграла вместо самого несобственного интеграла. Для того, чтобы вычислить несобственный интеграл, нужно использовать предел определённого интеграла. Если этот предел существует и конечен (не равен бесконечности), то несобственный интеграл называется сходящимся, а в противном случае - расходящимся. К чему стремится переменная под знаком предела, зависит от того, имеем мы дело с несобственным интегралом первого рода или второго рода. Узнаем об этом сейчас же.

Несобственные интегралы первого рода - с бесконечными пределами и их сходимость

Несобственные интегралы с бесконечным верхним пределом

Итак, запись несобственного интеграла как отличается от обычного определённого интеграла тем, что верхний предел интегрирования бесконечен.

Определение. Несобственным интегралом с бесконечным верхним пределом интегрирования от непрерывной функции f (x ) на промежутке от a до называется предел интеграла этой функции с верхним пределом интегрирования b и нижним пределом интегрирования a при условии, что верхний предел интегрирования неограниченно растёт , т.е.

.

Если этот предел существует и равен некоторому числу, а не бесконечности, то несобственный интеграл называется сходящимся , а число, которому равен предел, принимается за его значение. В противном случае несобственный интеграл называется расходящимся и ему не приписывается никакого значения.

Пример 1. Вычислить несобственный интеграл (если он сходится).

Решение. На основании определения несобственного интеграла находим

Так как предел существует и равен 1, то и данный несобственный интеграл сходится и равен 1.

В следующем примере подынтегральная функция почти как в примере 1, только степень икса - не двойка, а буква альфа, а задача состоит в исследовании несобственного интеграла на сходимость. То есть предстоит ответить на вопрос: при каких значениях альфы данный несобственный интеграл сходится, а при каких расходится?

Пример 2. Исследовать на сходимость несобственный интеграл (нижний предел интегрирования больше нуля).

Решение. Предположим сначала, что , тогда

В полученном выражении перейдём к пределу при :

Нетрудно видеть, что предел в правой части существует и равен нулю, когда , то есть , и не существует, когда , то есть .

В первом случае, то есть при имеет место . Если , то и не существует.

Вывод нашего исследования следующий: данный несобственный интеграл сходится при и расходится при .

Применяя к изучаемому виду несобственного интеграла формулу Ньютона-Лейбница , можно вывести следующую очень похожую на неё формулу:

.

Это обобщённая формула Ньютона-Лейбница.

Пример 3. Вычислить несобственный интеграл (если он сходится).

Предел этого интеграла существует:

Второй интеграл, составляющий сумму, выражающую исходный интеграл:

Предел этого интеграла также существует:

.

Находим сумму двух интегралов, являющуюся и значением исходного несобственного интеграла с двумя бесконечными пределами:

Несобственные интегралы второго рода - от неограниченных функций и их сходимость

Пусть функция f (x ) задана на отрезке от a до b и неограниченна на нём. Предположим, что функция обращается в бесконечность в точке b , в то время как во всех остальных точках отрезка она непрерывна.

Определение. Несобственным интегралом функции f (x ) на отрезке от a до b называется предел интеграла этой функции с верхним пределом интегрирования c , если при стремлении c к b функция неограниченно возрастает, а в точке x = b функция не определена , т.е.

.

Если этот предел существует, то несобственный интеграл второго рода называется сходящимся, в противном случае - расходящимся.

Используя формулу Ньютона-Лейбница, выводим.