Спирт жидкое или газообразное. Газообразные вещества: примеры и свойства

Я помню, как определение агрегатного состояния вещества нам объясняли еще в начальных классах. Учительница привела хороший пример про оловянного солдатика и тогда всем стало все понятно. Ниже я попробую освежить свои воспоминания.

Определить состояние вещества

Ну тут все просто: если вещество берется в руки, его можно пощупать и при нажатии на него оно сохраняет свои объем и форму - это твердое состояние. В жидком состоянии вещество не сохраняет форму, но сохраняет объем. Например, в стакане стоит вода, в данный момент она имеет форму стакана. А если ее перелить в чашку, то она примет форму чашки, но количество самой воды не изменится. Это означает, что вещество в жидком состоянии может менять форму, но не объем. В газообразном состоянии не сохраняется ни форма, ни объем вещества, а оно старается заполнить все доступное пространство.


А применительно к таблице, стоит упомянуть, что сахар и соль могут показаться жидкими веществами, но на самом деле они сыпучие вещества, весь их объем состоит из маленьких твердых кристаллов.

Состояния вещества: жидкое, твердое, газообразное

Все вещества на свете находятся в определенном состоянии: твердом, жидком или в виде газа. И любое же вещество может перейти из одного состояние в другое. Удивительно, но даже оловянный солдатик может быть жидким. Но для этого надо создать определенные условия, а именно - поместить его в сильно-сильно разогретое помещение, где олово расплавится и превратится в жидкий металл.


Но проще всего рассмотреть агрегатные состояния на примере воды.

  • Если жидкую воду заморозить, то она превратиться в лед - это ее твердое состояние.
  • Если жидкую воду сильно разогреть, то она начнет испаряться - это ее газообразное состояние.
  • А если нагреть лед, то он начнет таять и опять превратится в воду - это называется жидким состоянием.

Особенно стоит выделить процесс конденсации: если сконцентрировать и охладить испаренную воду, то газообразное состояние перейдет в твердое - это называется конденсацией, и так образуется снег в атмосфере.

На сегодняшний день известно о существовании более чем 3 миллионов различных веществ. И цифра эта с каждым годом растет, так как химиками-синтетиками и другими учеными постоянно производятся опыты по получению новых соединений, обладающих какими-либо полезными свойствами.

Часть веществ - это природные обитатели, формирующиеся естественным путем. Другая половина - искусственные и синтетические. Однако и в первом и во втором случае значительную часть составляют газообразные вещества, примеры и характеристики которых мы и рассмотрим в данной статье.

Агрегатные состояния веществ

С XVII века принято было считать, что все известные соединения способны существовать в трех агрегатных состояниях: твердые, жидкие, газообразные вещества. Однако тщательные исследования последних десятилетий в области астрономии, физики, химии, космической биологии и прочих наук доказали, что есть еще одна форма. Это плазма.

Что она собой представляет? Это частично или полностью И оказывается, таких веществ во Вселенной подавляющее большинство. Так, именно в состоянии плазмы находятся:

  • межзвездное вещество;
  • космическая материя;
  • высшие слои атмосферы;
  • туманности;
  • состав многих планет;
  • звезды.

Поэтому сегодня говорят, что существуют твердые, жидкие, газообразные вещества и плазма. Кстати, каждый газ можно искусственно перевести в такое состояние, если подвергнуть его ионизации, то есть заставить превратиться в ионы.

Газообразные вещества: примеры

Примеров рассматриваемых веществ можно привести массу. Ведь газы известны еще с XVII века, когда ван Гельмонт, естествоиспытатель, впервые получил углекислый газ и стал исследовать его свойства. Кстати, название этой группе соединений также дал он, так как, по его мнению, газы - это нечто неупорядоченное, хаотичное, связанное с духами и чем-то невидимым, но ощутимым. Такое имя прижилось и в России.

Можно классифицировать все газообразные вещества, примеры тогда привести будет легче. Ведь охватить все многообразие сложно.

По составу различают:

  • простые,
  • сложные молекулы.

К первой группе относятся те, что состоят из одинаковых атомов в любом их количестве. Пример: кислород - О 2 , озон - О 3 , водород - Н 2 , хлор - CL 2 , фтор - F 2 , азот - N 2 и прочие.

  • сероводород - H 2 S;
  • хлороводород - HCL;
  • метан - CH 4;
  • сернистый газ - SO 2 ;
  • бурый газ - NO 2 ;
  • фреон - CF 2 CL 2 ;
  • аммиак - NH 3 и прочие.

Классификация по природе веществ

Также можно классифицировать виды газообразных веществ по принадлежности к органическому и неорганическому миру. То есть по природе входящих в состав атомов. Органическими газами являются:

  • первые пять представителей (метан, этан, пропан, бутан, пентан). Общая формула C n H 2n+2 ;
  • этилен - С 2 Н 4 ;
  • ацетилен или этин - С 2 Н 2 ;
  • метиламин - CH 3 NH 2 и другие.

Еще одной классификацией, которой можно подвергнуть рассматриваемые соединения, является деление на основе входящих в состав частиц. Именно из атомов состоят не все газообразные вещества. Примеры структур, в которых присутствуют ионы, молекулы, фотоны, электроны, броуновские частицы, плазма, также относятся к соединениям в таком агрегатном состоянии.

Свойства газов

Характеристики веществ в рассматриваемом состоянии отличаются от таковых для твердых или жидких соединений. Все дело в том, что свойства газообразных веществ особенные. Частицы их легко и быстро подвижны, вещество в целом изотропное, то есть свойства не определяются направлением движения входящих в состав структур.

Можно обозначить самые главные физические свойства газообразных веществ, которые и будут отличать их от всех остальных форм существования материи.

  1. Это такие соединения, которые нельзя увидеть и проконтролировать, ощутить обычными человеческими способами. Чтобы понять свойства и идентифицировать тот или иной газ, опираются на четыре описывающих их все параметра: давление, температура, количество вещества (моль), объем.
  2. В отличие от жидкостей газы способны занимать все пространство без остатка, ограничиваясь лишь величиной сосуда или помещения.
  3. Все газы между собой легко смешиваются, при этом у этих соединений нет поверхности раздела.
  4. Существуют более легкие и тяжелые представители, поэтому под действием силы тяжести и времени, возможно увидеть их разделение.
  5. Диффузия - одно из важнейших свойств этих соединений. Способность проникать в другие вещества и насыщать их изнутри, совершая при этом совершенно неупорядоченные движения внутри своей структуры.
  6. Реальные газы электрический ток проводить не могут, однако если говорить о разреженных и ионизированный субстанциях, то проводимость резко возрастает.
  7. Теплоемкость и теплопроводность газов невысока и колеблется у разных видов.
  8. Вязкость возрастает с увеличением давления и температуры.
  9. Существует два варианта межфазового перехода: испарение - жидкость превращается в пар, сублимация - твердое вещество, минуя жидкое, становится газообразным.

Отличительная особенность паров от истинных газов в том, что первые при определенных условиях способны перейти в жидкость или твердую фазу, а вторые нет. Также следует заметить способность рассматриваемых соединений сопротивляться деформациям и быть текучими.

Подобные свойства газообразных веществ позволяют широко применять их в самых различных областях науки и техники, промышленности и народном хозяйстве. К тому же конкретные характеристики являются для каждого представителя строго индивидуальными. Мы же рассмотрели лишь общие для всех реальных структур особенности.

Сжимаемость

При разных температурах, а также под влиянием давления газы способны сжиматься, увеличивая свою концентрацию и снижая занимаемый объем. При повышенных температурах они расширяются, при низких - сжимаются.

Под действием давления также происходят изменения. Плотность газообразных веществ увеличивается и, при достижении критической точки, которая для каждого представителя своя, может наступить переход в другое агрегатное состояние.

Основные ученые, внесшие вклад в развитие учения о газах

Таких людей можно назвать множество, ведь изучение газов - процесс трудоемкий и исторически долгий. Остановимся на самых известных личностях, сумевших сделать наиболее значимые открытия.

  1. в 1811 году сделал открытие. Неважно, какие газы, главное, что при одинаковых условиях их в одном объеме их содержится равное количество по числу молекул. Существует рассчитанная величина, имеющая название по фамилии ученого. Она равна 6,03*10 23 молекул для 1 моль любого газа.
  2. Ферми - создал учение об идеальном квантовом газе.
  3. Гей-Люссак, Бойль-Мариотт - фамилии ученых, создавших основные кинетические уравнения для расчетов.
  4. Роберт Бойль.
  5. Джон Дальтон.
  6. Жак Шарль и многие другие ученые.

Строение газообразных веществ

Самая главная особенность в построении кристаллической решетки рассматриваемых веществ, это то, что в узлах ее либо атомы, либо молекулы, которые соединяются друг с другом слабыми ковалентными связями. Также присутствуют силы ван-дер-ваальсового взаимодействия, когда речь идет о ионах, электронах и других квантовых системах.

Поэтому основные типы строения решеток для газов, это:

  • атомная;
  • молекулярная.

Связи внутри легко рвутся, поэтому эти соединения не имеют постоянной формы, а заполняют весь пространственный объем. Это же объясняет отсутствие электропроводности и плохую теплопроводность. А вот теплоизоляция у газов хорошая, ведь, благодаря диффузии, они способны проникать в твердые тела и занимать свободные кластерные пространства внутри них. Воздух при этом не пропускается, тепло удерживается. На этом основано применение газов и твердых тел в совокупности в строительных целях.

Простые вещества среди газов

Какие по строению и структуре газы относятся к данной категории, мы уже оговаривали выше. Это те, что состоят из одинаковых атомов. Примеров можно привести много, ведь значительная часть неметаллов из всей периодической системы при обычных условиях существует именно в таком агрегатном состоянии. Например:

  • фосфор белый - одна из данного элемента;
  • азот;
  • кислород;
  • фтор;
  • хлор;
  • гелий;
  • неон;
  • аргон;
  • криптон;
  • ксенон.

Молекулы этих газов могут быть как одноатомными (благородные газы), так и многоатомными (озон - О 3). Тип связи - ковалентная неполярная, в большинстве случаев достаточно слабая, но не у всех. Кристаллическая решетка молекулярного типа, что позволяет этим веществам легко переходить из одного агрегатного состояния в другое. Так, например, йод при обычных условиях - темно-фиолетовые кристаллы с металлическим блеском. Однако при нагревании сублимируются в клубы ярко-фиолетового газа - I 2 .

К слову сказать, любое вещество, в том числе металлы, при определенных условиях могут существовать в газообразном состоянии.

Сложные соединения газообразной природы

Таких газов, конечно, большинство. Различные сочетания атомов в молекулах, объединенные ковалентными связями и ван-дер-ваальсовыми взаимодействиями, позволяют сформироваться сотням различных представителей рассматриваемого агрегатного состояния.

Примерами именно сложных веществ среди газов могут быть все соединения, состоящие из двух и более разных элементов. Сюда можно отнести:

  • пропан;
  • бутан;
  • ацетилен;
  • аммиак;
  • силан;
  • фосфин;
  • метан;
  • сероуглерод;
  • сернистый газ;
  • бурый газ;
  • фреон;
  • этилен и прочие.

Кристаллическая решетка молекулярного типа. Многие из представителей легко растворяются в воде, образуя соответствующие кислоты. Большая часть подобных соединений - важная часть химических синтезов, осуществляемых в промышленности.

Метан и его гомологи

Иногда общим понятием "газ" обозначают природное полезное ископаемое, которое представляет собой целую смесь газообразных продуктов преимущественно органической природы. Именно он содержит такие вещества, как:

  • метан;
  • этан;
  • пропан;
  • бутан;
  • этилен;
  • ацетилен;
  • пентан и некоторые другие.

В промышленности они являются очень важными, ведь именно пропан-бутановая смесь - это бытовой газ, на котором люди готовят пищу, который используется в качестве источника энергии и тепла.

Многие из них используются для синтеза спиртов, альдегидов, кислот и прочих органических веществ. Ежегодное потребление природного газа исчисляется триллионами кубометров, и это вполне оправданно.

Кислород и углекислый газ

Какие вещества газообразные можно назвать самыми широко распространенными и известными даже первоклассникам? Ответ очевиден - кислород и углекислый газ. Ведь это они являются непосредственными участниками газообмена, происходящего у всех живых существ на планете.

Известно, что именно благодаря кислороду возможна жизнь, так как без него способны существовать только некоторые виды анаэробных бактерий. А углекислый газ - необходимый продукт "питания" для всех растений, которые поглощают его с целью осуществления процесса фотосинтеза.

С химической точки зрения и кислород, и углекислый газ - важные вещества для проведения синтезов соединений. Первый является сильным окислителем, второй чаще восстановитель.

Галогены

Это такая группа соединений, в которых атомы - это частицы газообразного вещества, соединенные попарно между собой за счет ковалентной неполярной связи. Однако не все галогены - газы. Бром - это жидкость при обычных условиях, а йод - легко возгоняющееся твердое вещество. Фтор и хлор - ядовитые опасные для здоровья живых существ вещества, которые являются сильнейшими окислителями и используются в синтезах очень широко.

Смеси могут отличаться между собой не только по составу , но и по внешнему виду . В соответствии с тем, как выглядит данная смесь и какими свойствами она обладает, её можно отнести либо к однородным (гомогенным) , либо к неоднородным (гетерогенным) смесям.

Однородными (гомогенными) называют такие смеси, в которых даже при помощи микроскопа нельзя обнаружить частицы других веществ.

Состав и физические свойства во всех частях такой смеси одинаковы, поскольку между отдельными её составными частями отсутствуют поверхности раздела.

К однородным смесям относятся:

  • смеси газов;
  • растворы;
  • сплавы.

Смеси газов

В качестве примера такой однородной смеси можно назвать воздух .

В состав чистого воздуха входят различные газообразные вещества :

  • азот (его объёмная доля в чистом воздухе составляет \(78\) %);
  • кислород (\(21\) %);
  • благородные газы - аргон и другие (\(0,96\) %);
  • углекислый газ (\(0,04\) %).

Газообразной смесью являются природный газ и попутный нефтяной газ . Основными составными частями этих смесей являются газообразные углеводороды : метан, этан, пропан и бутан.

Также газообразной смесью является такой возобновляемый ресурс, как биогаз , образующийся при переработке бактериями органических остатков на свалках, в ёмкостях очистных сооружений и в специальных установках. Главная составная часть биогаза - метан , который содержит примесь углекислого газа, сероводорода и целого ряда других газообразных веществ.

Cмеси газов: воздух и биогаз. Воздух можно продавать любознательным туристам, а биогаз, получаемый из зелёной массы в специальных ёмкостях - использовать в качестве топлива

Растворы

Обычно так называют жидкие смеси веществ, хотя этот термин в науке имеет более широкое значение: раствором принято называть любую (в том числе газообразную и твёрдую) однородную смесь веществ. Итак, о жидких растворах.

Важным раствором, встречающимся в природе, является нефть . Жидкие продукты, получаемые при её переработке: бензин, керосин, дизельное топливо, мазут, смазочные масла - также представляют собой смесь различных углеводородов .

Обрати внимание!

Чтобы приготовить раствор, нужно газообразное, жидкое или твёрдое вещество смешать с растворителем (водой, спиртом, ацетоном и др.).

Например, нашатырный спирт получают, растворяя вводе газ аммиак. В свою очередь, для приготовления тинктуры йода кристаллическиййод растворяют в этиловом спирте(этаноле).

Жидкие однородные смеси (растворы): нефть и нашатырный спирт

Сплав (твёрдый раствор) может быть получен на основе любого металла , и в его состав может входить множество различных веществ.

Самыми важными в настоящее время являются сплавы железа - чугуны и стали.

Чугунами называют сплавы железа, содержащие более \(2\) % углерода, а сталями - сплавы железа, содержание углерода в которых меньше.

То, что обычно называют «железом», на самом деле является сталью с низким содержанием углерода. Кроме углерода в состав сплавов железа могут входить кремний, фосфор, сера .

однофазные системы, состоящие из двух или более компонентов. По своему агрегатному состоянию растворы могут быть твердыми, жидкими или газообразными. Так, воздух - это газообразный раствор, гомогенная смесь газов; водка - жидкий раствор, смесь нескольких веществ, образующих одну жидкую фазу; морская вода - жидкий раствор, смесь твердого (соль) и жидкого (вода) веществ, образующих одну жидкую фазу; латунь - твердый раствор, смесь двух твердых веществ (меди и цинка), образующих одну твердую фазу. Смесь бензина и воды не является раствором, поскольку эти жидкости не растворяются друг в друге, оставаясь в виде двух жидких фаз с границей раздела. Компоненты растворов сохраняют свои уникальные свойства и не вступают в химические реакции между собой с образованием новых соединений. Так, при смешивании двух объемов водорода с одним объемом кислорода получается газообразный раствор. Если эту газовую смесь поджечь, то образуется новое вещество - вода, которая сама по себе раствором не является. Компонент, присутствующий в растворе в большем количестве, принято называть растворителем, остальные компоненты - растворенными веществами.

Однако иногда бывает трудно провести грань между физическим перемешиванием веществ и их химическим взаимодействием. Например, при смешивании газообразного хлороводорода HCl с водой

H 2 O образуются ионы H 3 O + и Cl - . Они притягивают к себе соседние молекулы воды, образуя гидраты. Таким образом, исходные компоненты - HCl и H 2 O - после смешивания претерпевают существенные изменения. Тем не менее ионизация и гидратация (в общем случае - сольватация) рассматриваются как физические процессы, происходящие при образовании растворов.

Одним из важнейших типов смесей, представляющих собой гомогенную фазу, являются коллоидные растворы: гели, золи, эмульсии и аэрозоли. Размер частиц в коллоидных растворах составляет 1-1000 нм, в истинных растворах

~ 0,1 нм (порядка размера молекул). Основные понятия . Два вещества, растворяющиеся друг в друге в любых пропорциях с образованием истинных растворов, называют полностью взаиморастворимыми. Такими веществами являются все газы, многие жидкости (например, этиловый спирт - вода, глицерин - вода, бензол - бензин), некоторые твердые вещества (например, серебро - золото). Для получения твердых растворов необходимо сначала расплавить исходные вещества, затем смешать их и дать затвердеть. При их полной взаиморастворимости образуется одна твердая фаза; если же растворимость частичная, то в образовавшемся твердом веществе сохраняются мелкие кристаллы одного из исходных компонентов.

Если два компонента образуют одну фазу при смешивании только в определенных пропорциях, а в других случаях возникают две фазы, то они называются частично взаиморастворимыми. Таковы, например, вода и бензол: истинные растворы получаются из них только при добавлении незначительного количества воды к большому объему бензола или незначительного количества бензола к большому объему воды. Если же смешать равные количества воды и бензола, то образуется двухфазная жидкая система. Нижний ее слой - это вода с небольшим количеством бензола, а верхний

- бензол с малой примесью воды. Известны также вещества, совсем не растворяющиеся одно в другом, например, вода и ртуть. Если два вещества лишь частично взаиморастворимы, то при данных температуре и давлении существует предельное количество одного вещества, которое способно образовать истинный раствор с другим в равновесных условиях. Раствор с предельной концентрацией растворенного вещества называют насыщенным. Можно приготовить и так называемый пересыщенный раствор, в котором концентрация растворенного вещества даже больше, чем в насыщенном. Однако пересыщенные растворы неустойчивы, и при малейшем изменении условий, например при перемешивании, попадании частичек пыли или добавлении кристалликов растворяемого вещества, избыток растворенного вещества выпадает в осадок.

Всякая жидкость начинает кипеть при той температуре, при которой давление ее насыщенного пара достигает величины внешнего давления. Например, вода под давлением 101,3 кПа кипит при 100

° С потому, что при этой температуре давление водяного пара как раз равно 101,3 кПа. Если же растворить в воде какое-нибудь нелетучее вещество, то давление ее пара понизится. Чтобы довести давление пара полученного раствора до 101,3 кПа, нужно нагреть раствор выше 100 ° С. Отсюда следует, что температура кипения раствора всегда выше температуры кипения чистого растворителя. Аналогично объясняется и понижение температуры замерзания растворов. Закон Рауля . В 1887 французский физик Ф.Рауль, изучая растворы различных нелетучих жидкостей и твердых веществ, установил закон, связывающий понижение давления пара над разбавленными растворами неэлектролитов с концентрацией: относительное понижение давления насыщенного пара растворителя над раствором равно мольной доле растворенного вещества. Из закона Рауля следует, что повышение температуры кипения или понижение температуры замерзания разбавленного раствора по сравнению с чистым растворителем пропорционально молярной концентрации (или мольной доле) растворенного вещества и может быть использовано для определения его молекулярной массы.

Раствор, поведение которого подчиняется закону Рауля, называется идеальным. Наиболее близки к идеальным растворы неполярных газов и жидкостей (молекулы которых не меняют ориентации в электрическом поле). В этом случае теплота растворения равна нулю, а свойства растворов можно прямо предсказать, зная свойства исходных компонентов и пропорции, в которых они смешиваются. Для реальных растворов сделать такое предсказание нельзя. При образовании реальных растворов обычно выделяется или поглощается тепло. Процессы с выделением тепла называются экзотермическими, а с поглощением - эндотермическими.

Те характеристики раствора, которые зависят в основном от его концентрации (числа молекул растворенного вещества на единицу объема или массы растворителя), а не от природы растворенного вещества, называют

коллигативными . Например, температура кипения чистой воды при нормальном атмосферном давлении равна 100 ° С, а температура кипения раствора, содержащего 1 моль растворенного (недиссоциирующего) вещества в 1000 г воды, составляет уже 100,52 ° С независимо от природы этого вещества. Если же вещество диссоциирует, образуя ионы, то температура кипения увеличивается пропорционально росту общего числа частиц растворенного вещества, которое благодаря диссоциации превышает число молекул вещества, добавленных в раствор. Другими важными коллигативными величинами являются температура замерзания раствора, осмотическое давление и парциальное давление паров растворителя. Концентрация раствора - это величина, отражающая пропорции между растворенным веществом и растворителем. Такие качественные понятия, как «разбавленный» и «концентрированный», говорят только о том, что раствор содержит мало или много растворенного вещества. Для количественного выражения концентрации растворов часто используют проценты (массовые или объемные), а в научной литературе - число молей или химических эквивалентов (см . ЭКВИВАЛЕНТНАЯ МАССА) растворенного вещества на единицу массы или объема растворителя либо раствора. Чтобы не возникало путаницы, следует всегда точно указывать единицы измерения концентрации. Рассмотрим следующий пример. Раствор, состоящий из 90 г воды (ее объем равен 90 мл, поскольку плотность воды равна 1г/мл) и 10 г этилового спирта (его объем равен 12,6 мл, поскольку плотность спирта равна 0,794 г/мл), имеет массу 100 г, но объем этого раствора равен 101,6 мл (а был бы равен 102,6 мл, если бы при смешивании воды и спирта их объемы просто складывались). Процентную концентрацию раствора можно рассчитать по-разному: или

или

Единицы концентраций, используемые в научной литературе, основаны на таких понятиях, как моль и эквивалент, поскольку все химические расчеты и уравнения химических реакций должны основываться на том, что вещества вступают в реакции между собой в определенных соотношениях. Например, 1 экв. NaCl, равный 58,5 г, взаимодействует с 1 экв. AgNO 3 , равным 170 г. Ясно, что растворы, содержащие по 1 экв. этих веществ, имеют совершенно разные процентные концентрации. Молярность (M или моль/л) - число молей растворенного веществ, содержащихся в 1 л раствора. Моляльность (м) - число молей растворенного вещества, содержащихся в 1000 г растворителя. Нормальность (н.) - число химических эквивалентов растворенного вещества, содержащихся в 1 л раствора. Мольная доля (безразмерная величина) - число молей данного компонента, отнесенное к общему числу молей растворенного вещества и растворителя. (Мольный процент - мольная доля, умноженная на 100.)

Наиболее распространенная единица - молярность, но при ее расчете следует учитывать некоторые неоднозначности. Например, чтобы получить 1M раствор данного вещества, растворяют в заведомо небольшом количестве воды точную его навеску, равную мол. массе в граммах, и доводят объем раствора до 1 л. Количество воды, необходимое для приготовления данного раствора, может слегка различаться в зависимости от температуры и давления. Поэтому два одномолярных раствора, приготовленных в разных условиях, в действительности имеют не совсем одинаковые концентрации. Моляльность вычисляется исходя из определенной массы растворителя (1000 г), которая не зависит от температуры и давления. В лабораторной практике гораздо удобнее отмеривать определенные объемы жидкостей (для этого существуют бюретки, пипетки, мерные колбы), чем взвешивать их, поэтому в научной литературе концентрации чаще выражают в молях, а моляльность обычно применяют только при особо точных измерениях.

Нормальность используется для упрощения расчетов. Как мы уже говорили, вещества взаимодействуют друг с другом в количествах, соответствующих их эквивалентам. Приготовив растворы разных веществ одинаковой нормальности и взяв равные их объемы, мы можем быть уверены в том, что они содержат одно и то же количество эквивалентов.

В тех случаях, когда трудно (или нет необходимости) делать различие между растворителем и растворенным веществом, концентрацию измеряют в мольных долях. Мольные доли, как и моляльности, не зависят от температуры и давления.

Зная плотности растворенного вещества и раствора, можно пересчитать одну концентрацию в другую: молярность в моляльность, мольную долю и наоборот. Для разбавленных растворов данного растворенного вещества и растворителя эти три величины пропорциональны друг другу.

Растворимость данного вещества - это его способность образовывать растворы с другими веществами. Количественно растворимость газа, жидкости или твердого тела измеряется концентрацией их насыщенного раствора при данной температуре. Это важная характеристика вещества, помогающая понять его природу, а также влиять на ход реакций, в которых это вещество участвует. Газы . В отсутствие химического взаимодействия газы смешиваются друг с другом в любых пропорциях, и в этом случае говорить о насыщении нет смысла. Однако при растворении газа в жидкости существует некая предельная концентрация, зависящая от давления и температуры. Растворимость газов в некоторых жидкостях коррелирует с их способностью к сжижению. Наиболее легко сжижаемые газы, например NH 3 , HCl, SO 2 , более растворимы, чем трудно сжижаемые газы, например O 2 , H 2 и He. При наличии химического взаимодействия между растворителем и газом (например, между водой и NH 3 или HCl) растворимость увеличивается. Растворимость данного газа изменяется с природой растворителя, однако порядок, в котором располагаются газы в соответствии с увеличением их растворимости, остается примерно одинаковым для разных растворителей.

Процесс растворения подчиняется принципу Ле Шателье (1884): если на систему, находящуюся в равновесии, оказывается какое-либо воздействие, то в результате протекающих в ней процессов равновесие сместится в таком направлении, что оказанное воздействие уменьшится. Растворение газов в жидкостях обычно сопровождается выделением тепла. При этом, в соответствии с принципом Ле Шателье, растворимость газов уменьшается. Это уменьшение тем заметнее, чем выше растворимость газов: такие газы имеют и б

льшую теплоту растворения. «Мягкий» вкус кипяченой или дистиллированной воды объясняется отсутствием в ней воздуха, поскольку его растворимость при высокой температуре весьма мала.

С ростом давления растворимость газов увеличивается. Согласно закону Генри (1803), масса газа, который может раствориться в данном объеме жидкости при постоянной температуре, пропорциональна его давлению. Это свойство используется для приготовления газированных напитков. Углекислый газ растворяют в жидкости при давлении 3-4 атм.; в этих условиях в данном объеме может раствориться в 3-4 раза больше газа (по массе), чем при 1 атм. Когда емкость с такой жидкостью открывают, давление в ней падает, и часть растворенного газа выделяется в виде пузырьков. Аналогичный эффект наблюдается при открывании бутылки шампанского или выходе на поверхность подземных вод, насыщенных на большой глубине углекислым газом.

При растворении в одной жидкости смеси газов растворимость каждого из них остается такой же, как и в отсутствие других компонентов при таком же давлении, как в случае смеси (закон Дальтона).

Жидкости. Взаимная растворимость двух жидкостей определяется тем, насколько сходно строение их молекул («подобное растворяется в подобном»). Для неполярных жидкостей, например углеводородов, характерны слабые межмолекулярные взаимодействия, поэтому молекулы одной жидкости легко проникают между молекулами другой, т.е. жидкости хорошо смешиваются. Напротив, полярные и неполярные жидкости, например вода и углеводороды, смешиваются друг с другом плохо. Каждой молекуле воды нужно сначала вырваться из окружения других таких же молекул, сильно притягивающими ее к себе, и проникнуть между молекулами углеводорода, притягивающими ее слабо. И наоборот, молекулы углеводорода, чтобы раствориться в воде, должны протиснуться между молекулами воды, преодолевая их сильное взаимное притяжение, а для этого нужна энергия. При повышении температуры кинетическая энергия молекул возрастает, межмолекулярное взаимодействие ослабевает и растворимость воды и углеводородов увеличивается. При значительном повышении температуры можно добиться их полной взаимной растворимости. Такую температуру называют верхней критической температурой растворения (ВКТР).

В некоторых случаях взаимная растворимость двух частично смешивающихся жидкостей увеличивается при понижении температуры. Этот эффект наблюдается в том случае, когда при смешивании выделяется тепло, обычно в результате химической реакции. При значительном понижении температуры, но не ниже точки замерзания, можно достичь нижней критической температуры растворения (НКТР). Можно предположить, что все системы, имеющие НКТР, имеют и ВКТР (обратное не обязательно). Однако в большинстве случаев одна из смешивающихся жидкостей кипит при температуре ниже ВКТР. У системы никотин-вода НКТР равна 61

° С, а ВКТР составляет 208 ° C. В интервале 61-208 ° C эти жидкости ограниченно растворимы, а вне этого интервала обладают полной взаимной растворимостью. Твердые вещества . Все твердые вещества проявляют ограниченную растворимость в жидкостях. Их насыщенные растворы имеют при данной температуре определенный состав, который зависит от природы растворенного вещества и растворителя. Так, растворимость хлорида натрия в воде в несколько миллионов раз выше растворимости нафталина в воде, а при растворении их в бензоле наблюдается обратная картина. Этот пример иллюстрирует общее правило, согласно которому твердое вещество легко растворяется в жидкости, имеющей с ним сходные химические и физические свойства, но не растворяется в жидкости с противоположными свойствами.

Соли обычно легко растворяются в воде и хуже - в других полярных растворителях, например в спирте и жидком аммиаке. Однако растворимость солей тоже существенно различается: например, нитрат аммония обладает в миллионы раз большей растворимостью в воде, чем хлорид серебра.

Растворение твердых веществ в жидкостях обычно сопровождается поглощением тепла, и в соответствии с принципом Ле Шателье их растворимость должна увеличиваться при нагревании. Этот эффект можно использовать для очистки веществ методом перекристаллизации. Для этого их растворяют при высокой температуре до получения насыщенного раствора, затем раствор охлаждают и после выпадения растворенного вещества в осадок профильтровывают. Есть вещества (например, гидроксид, сульфат и ацетат кальция), растворимость которых в воде с ростом температуры уменьшается.

Твердые вещества, как и жидкости, тоже могут растворяться друг в друге полностью, образуя гомогенную смесь - истинный твердый раствор, аналогичный жидкому раствору. Частично растворимые друг в друге вещества образуют два равновесных сопряженных твердых раствора, составы которых изменяются с температурой.

Коэффициент распределения . Если к равновесной системе двух несмешивающихся или частично смешивающихся жидкостей добавить раствор какого-либо вещества, то оно распределяется между жидкостями в определенной пропорции, не зависящей от общего количества вещества, в отсутствие химических взаимодействий в системе. Это правило получило название закона распределения, а отношение концентраций растворенного вещества в жидкостях - коэффициента распределения. Коэффициент распределения примерно равен отношению растворимостей данного вещества в двух жидкостях, т.е. вещество распределяется между жидкостями соответственно его растворимостям. Это свойство используется для экстракции данного вещества из его раствора в одном растворителе с помощью другого растворителя. Еще одним примером его применения является процесс экстракции серебра из руд, в состав которых оно часто входит вместе со свинцом. Для этого в расплавленную руду добавляют цинк, который не смешивается со свинцом. Серебро распределяется между расплавленным свинцом и цинком, преимущественно в верхнем слое последнего. Этот слой собирают и отделяют серебро дистилляцией цинка. Произведение растворимости (ПР ). Между избытком (осадком) твердого вещества M x B y и его насыщенным раствором устанавливается динамическое равновесие, описываемое уравнением Константа равновесия этой реакции равна и называется произведением растворимости. Она постоянна при данных температуре и давлении и является величиной, на основании которой рассчитывают растворимость осадка и изменяют ее. Если в раствор добавить соединение, диссоциирующее на ионы, одноименные с ионами малорастворимой соли, то в соответствии с выражением для ПР растворимость соли уменьшается. При добавлении же соединения, реагирующего с одним из ионов, она, напротив, увеличится. О некоторых свойствах растворов ионных соединений см. также ЭЛЕКТРОЛИТЫ . ЛИТЕРАТУРА Шахпаронов М.И. Введение в молекулярную теорию растворов . М., 1956
Реми И. Курс неорганической химии , тт. 1-2. М., 1963, 1966

Ты долго принимаешь очень горячий душ, зеркало в ванной покрывается паром. Ты забываешь на окне кастрюлю с водой, а потом обнаруживаешь, что вода выкипела и кастрюля обгорела. Можно подумать, что вода любит превращаться то из газа в жидкость, то из жидкости в газ. Но когда это происходит?

В вентилируемом пространстве вода постепенно испаряется при любой температуре. Но кипит она только при определенных условиях. Температура кипения зависит от давления над жидкостью. При нормальном атмосферном давлении температура кипения составит 100 градусов. С высотой давление уменьшится так же, как и температура кипения. На вершине Монблана она составит 85 градусов, и там уже не приготовить вкусный чай! Но в скороварке, когда раздается свисток, температура воды уже составляет 130 градусов, а давление в 4 раза выше атмосферного. При такой температуре еда готовится скорее, а ароматы не улетучиваются вместе с парнем, поскольку клапан закрыт.

Изменение агрегатного состояния вещества при температурных изменениях.

Любая жидкость может перейти в газообразное состояние, если ее достаточно нагреть, а любой газ в жидкое, если его остудить. Поэтому бутан, который используют в газовых плитах и на даче, хранят в закрытых баллонах. Он жидкий и находится под давлением, как в скороварке. И на открытом воздухе при температуре чуть ниже 0 градусов метан кипит и очень быстро испаряется. Сжиженный метан хранят в гигантских резервуарах - танках. При обычном атмосферном давлении метан закипает при температуре 160 градусов ниже нуля. Чтобы газ не улетучился во время транспортировки, танки тщательно затрагивают как термосы.

Изменение агрегатных состояний вещества при изменении давления.

Между жидким и газообразным состоянием вещества существует зависимость от температуры и давления. Поскольку вещество в жидком состояние более насыщенное, чем в газообразном, можно подумать, что если увеличить давление, газ сразу превратится в жидкость. Но это не так. Впрочем, если ты станешь сжимать воздух велосипедным насосом, ты обнаружишь, что он нагревается. Он аккумулирует энергию, которую ты ему передаешь, давя на поршень. Газ путем сжатия можно превратить в жидкость лишь в том случае, если его одновременно охлаждать. Наоборот, жидкости, чтобы превратиться в газ, необходимо получить тепло. Вот почему испаряющийся спирт или эфир, отбирает тепло у нашего тела, создает ощущение холода на коже. Испарение морской воды под влиянием ветра охлаждает водную поверхность, а потоотделение остужает тело.