Астрономия древней греции. Древнегреческий астроном аристарх самосский - биография, открытия и интересные факты Развитие астрономии в древней греции

- Добрый день, ученики! - поздоровался преподаватель, когда ученики вошли в класс и сели заняли свои места за партами.

Юноши и девушки с интересом оглядывались по сторонам, изучая множество портретов, появившихся на стенах кабинета. Как и все волшебные картины, они были подвижны. На учеников молчаливо и угрюмо смотрели с холстов ученые-астрономы. Некоторые покачивали головой, некоторые зевали. Вдоль стены стояли гипсовые бюсты древних астрономов. Как и портреты, тоже «живые». Они вздыхали, пожимали плечами, а некоторые тихонько переговаривались.

- Сегодня мы поговорим об истории Астрономии лишь в одной стране. – начал урок профессор, призывая к тишине и вниманию. Он строго глянул на бюсты, и те сразу умолкли. - Итак, запишите тему урока: «История Астрономии в Древней Греции». Посмотрите на стены, на них вы увидите портреты некоторых греческих астрономов. Но начнём мы с самой истории. Древнегреческая астрономия во многом основана на достижениях египетских и шумерских жрецов. Несомненным достижением греческих ученых является то, что они систематизировали все существующие знания и продолжили их изучение.

Известно, что эллины (т.е. древние греки), проявляли большой интерес к астрономии. Некоторые названия созвездий и планет, которые они использовали, мы используем и сейчас. Греки исправили некоторые недоразумения предшественников. Например, вавилоняне считали, что Венера утром и вечером – это разные космические тела. Вавилоняне называли их Фосфор и Геспер. Но греки исправили это заблуждение. Это исправление приписывается Пифагору и Пармениду. Вот они, - сказал профессор, указав на два бюста, стоящих около стола. Оба бюста кивнули.


Профессор продолжил.

В Древней Греции Земля представлялась в виде плоского или выпуклого диска, окруженного океаном. Но, были и те, кто выдвигал предположение о том, что Земля имеет вид шара. Идеи эти принадлежат Платону и Аристотелю.

Профессор показал рукой на два гипсовых изваяния около окна. Платон нахмурил брови. Аристотель изобразил подобие улыбки.


- Господин Аристотель был учеником многоуважаемого Платона. – волшебник учтиво кивнул бюстам астрономов. - По его мнению, метеоры – это атмосферные явления, схожие молнии. Наблюдая за Луной он заметил, что в определенные фазы она выглядит как шар, освещенный с одной стороны Солнцем. А из этого заключил, что Луна имеет форму шара. Далее он сделал вывод, что тень, закрывающая Луну во время затмений, может принадлежать только Земле, а раз тень круглая, то и Земля должна быть круглой.

Правда, Аристотель категорически отрицал вероятность того, что Земля вращается вокруг Солнца. Он был уверен, что планета неподвижна.

А вот достопочтенный Аристарх Самосский, великий ученый своего времени, стал первым человеком, который высказал мысль, что Земля вращается вокруг Солнца.

Преподаватель подошел к портрету и приветственно кивнул астроному. Портрет в ответ отвесил поклон и, сложив руки на груди, наблюдал за учениками.


Он делал попытки вычислить расстояние между Землей, Солнцем и Луной, а также отношения их размеров. Аристарх определил, что Солнце находится в 19 раз дальше от Земли, чем Луна (по современным данным – в 400 раз дальше), а объем Солнца в 300 раз превышает объем Земли. Аристарх также объяснил, почему происходит смена дня и ночи: просто Земля вращается не только вокруг Солнца, но вокруг своей оси.

Еще одним великим ученым в области астрономии был Эратосфен. Он достаточно точно измерил диаметр Земли и предположил, что Земля имеет наклон.

Портрет Эратосфена кивал головой в знак того, что согласен со словами преподавателя.


- Гипарх! Выдающийся астроном античности. - Каспер подошел к очередному портрету и кивнул ему в приветственном жесте. Портрет ответил тем же.


- Усовершенствовал календарь (согласно его учению год длился 365,25 дней). Создал систему предсказания солнечных и лунных затмений с точностью до 1-2 часов. А так же первым составил каталог звезд, насчитывающий их около 1000, и при этом разбил их по степени яркости на 6 классов.

Прозвенел школьный колокол.

- Урок окончен. – объявил Майкл Каспер. – Домашнее задание на доске, не забудьте записать. Всего доброго.

Ученики покинули кабинет, а профессор принялся убирать бюсты и портреты.

Домашнее задание:

    Какие заблуждения в области астрономии исправили древние греки?

    Расскажите об идеях Платона и Аристотеля.

    Чем прославился Аристарх Самосский?

    Расскажите о первом каталоге звезд.

Дополнительное задание:

    Сочинение на тему «Разговор с астрономом Древней Греции»

    Доклад на тему: «Развитие астрономии в странах Ислама».

    Доклад на тему: «Геоцентрическая система мира».

История астрономии отличается от истории других естественных наук прежде всего
своей особой древностью. В далеком прошлом, когда из практических навыков,
накопленных в повседневной жизни и деятельности, еще не сформировалось
никаких систематических знаний по физике и химии, астрономия уже была
высокоразвитой наукой.
На протяжении всех этих столетий учение о звездах было существенной частью
философско-религиозного мировоззрения, являвшегося отражением
общественной жизни. История астрономии явилась развитием того представления,
которое человечество составило себе о мире.

Астрономия в Древнем Китае
Древнейший период развития китайской цивилизации относится ко времени царств Шан и Чжоу.
Потребности повседневной жизни, развитие земледелия, ремесла побуждали древних китайцев
изучать явления природы и накапливать первичные научные знания. Подобные знания, в частности,
математические и астрономические, уже существовали в период Шан (Инь). Об этом
свидетельствуют как литературные памятники, так и надписи на костях. Предания, вошедшие в «Шу
цзин», рассказывают о том, что уже в древнейшие времена было известно деление года на
четыре сезона. Путем постоянных наблюдений китайские астрономы установили, что картина
звездного неба, если ее наблюдать изо дня в день в одно и то же время суток, меняется. Они
подметили закономерность в появлении на небесном своде определенных звезд и созвездий и
временем наступления того или иного сельскохозяйственного
сезона года. В 104 г. до н. э. в Китае была созвана обширная
конференция астрономов, посвященная вопросу улучшения
действовавшей в то время календарной системы «Чжуань-сюй
ли. После оживленной дискуссии на конференции была
принята официальная календарная система «Тайчу ли»,
названная так в честь императора Тай-чу.

Астрономия в Древнем Египте
Египетскую астрономию создала необходимость вычислять периоды разлива Нила. Год
исчислялся по звезде Сириус, утреннее появление которой после
временной невидимости совпадало с ежегодным наступлением
половодья. Большим достижением древних египтян было составление довольно точного календаря. Год состоял из 3 сезонов, каждый
сезон – из 4 месяцев, каждый месяц – из 30 дней (трех декад по 10
дней). К последнему месяцу прибавляли 5 добавочных дней, что
позволяло совмещать календарный и астрономический год (365
дней). Начало года совпадало с подъемом воды в Ниле, то есть с
19 июля, днем восхода самой яркой звезды – Сириуса. Сутки делили на 24 часа, хотя величина часа была не одинаковой, как сейчас,
а колебалась, в зависимости от времени года (летом дневные
часы были длинными, ночные – короткими, зимой – наоборот).
Египтяне хорошо изучили видимое простым глазом звездное небо,
они различали неподвижные звезды и блуждающие планеты.
Звезды были объединены в созвездия и получили имена тех животных, контуры которых, по мнению жрецов, они напоминали («бык»,
«скорпион», «крокодил» и др.).

Астрономия в Древней Индии
Сведения по астрономии можно найти в имеющей религиознофилософское направление ведической литературе, относящейся ко
II–I тысячелетию до н.э. Там содержатся, в частности, сведения о
солнечных затмениях, интеркаляциях с помощью тринадцатого
месяца, список накшатр – лунных стоянок; наконец,
космогонические гимны, посвященные богине Земли, прославление
Солнца, олицетворение времени как начальной мощи, также имеют
определенное отношение к астрономии. Сведения о планетах
упоминаются в тех разделах ведической литературы, которые
посвящены астрологии. Семь адитья, упомянутые в «Ригведе», можно
трактовать как Солнце, Луну и пять известных в древности планет –
Марс, Меркурий, Юпитер, Венера, Сатурн. В отличие от вавилонских
и древнекитайских астрономов, ученые Индии практически не
интересовались изучением звезд как таковых и не составляли
звездных каталогов. Их интерес к звездам в основном
сосредотачивался на тех созвездиях, которые лежали н эклиптике или
вблизи нее. Выбором подходящих звезд и созвездий они смогли
получить звездную систему для обозначения пути Солнца и Луны. Эта
система среди индийцев получила название «системы накшатры»,
среди китайцев – «системы сю», среди арабов – «системы
маназилей». Следующие сведения по индийской астрономии
относятся к первым векам нашей эры.

Астрономия в Древней Греции
Астрономические знания, накопленные в Египте и Вавилоне заимствовали
древние греки. В VI в. до н. э. греческий философ Гераклит высказал
мысль, что Вселенная всегда была, есть и будет, что в ней нет ничего
неизменного – все движется, изменяется, развивается. В конце VI в. до н. э.
Пифагор впервые высказал предположение, что Земля имеет форму
шара. Позднее, в IV в. до н. э. Аристотель при помощи остроумных
соображений доказал шарообразность Земли. Живший в III в. до н. э.
Аристарх Самосский полагал, что Земля обращается вокруг Солнца.
Расстояние от Земли до Солнца он определил в 600 диаметров Земли (в 20
раз меньше действительного). Однако это расстояние Аристарх считал
ничтожным по сравнению с расстоянием от Земли до звезд. В конце IV в. до
н. э. после походов и завоеваний Александра Македонского греческая
культура проникла во все страны Ближнего Востока. Возникший в Египте
город Александрия стал крупнейшим культурным центром. Во II в. до н. э.
великий александрийский астроном Гиппарх, используя уже накопленные
наблюдения, составил каталог более, чем 1000 звезд с довольно точным
определением их положения на небе. Во II в. до н. э. александрийский
астроном Птолемей выдвинул свою систему мира, позднее названной
геоцентрической: неподвижная Земля в ней была расположена в центре
Вселенной.

Астрономия в Древнем Вавилоне
Вавилонская культура – одна из древнейших культур на земном шаре – восходит своими корнями к IV
тысячелетию до н. э. Древнейшими очагами этой культуры были города Шумера и Аккада, а также Элама,
издавна связанного с Двуречьем. Вавилонская культура оказала большое влияние на развитие древних народов
Передней Азии и античного мира. Одним из наиболее значительных достижений шумерийского народа было
изобретение письменности, появившейся в середине IV тысячелетия до н.э. Именно письменность позволила
установить связь не только между современниками, но даже между людьми различных поколений, а также
передать потомству важнейшие достижения культуры. О значительном развитии астрономии говорят данные,
фиксирующие моменты восхода, захода и кульминации различных звезд, а также умение вычислять промежутки
времени, их разделяющие. В VIII–VI вв. вавилонские жрецы и астрономы накопили большое количество знаний,
имели представление о процессии (предварения равноденствий) и даже предсказывали затмения. Некоторые
наблюдения и знания в области астрономии позволили построить особый календарь, отчасти основанный на
лунных фазах. Основными календарными единицами счета времени были сутки, лунный месяц и год. Сутки
делились на три стража ночи и три стража дня. Одновременно с этим сутки делились на 12 часов, а час – на 30
минут, что соответствует шестеричной системе счисления, лежавшей в основе вавилонской математики,
астрономии и календаря. Очевидно, и в календаре отразилось стремление разделить сутки, год и круг на 12
больших и 360 малых частей.

В древности астрономия получила наибольшее развитие среди всех прочих наук. Одна из причин этого заключалась в том, что астрономические явления проще для понимания, чем явления, наблюдаемые на поверхности Земли. Хотя древние не знали этого, тогда, как и теперь, Земля и другие планеты двигались вокруг Солнца по орбитам, близким к круговым, примерно с постоянной скоростью, под воздействием единственной силы – гравитации, а также вращались вокруг своих осей, в общем, с постоянными скоростями. Все это справедливо и по отношению к движению Луны вокруг Земли. В результате Солнце, Луна и планеты кажутся с Земли движущимися упорядоченным и предсказуемым образом, и их движение можно изучать с достаточной точностью.

Другая причина была в том, что в древности астрономия имела практическое значение, в отличии от физики. Как использовали астрономические знания, мы увидим в главе 6.

В главе 7 мы рассмотрим то, что стало, несмотря на неточности, триумфом науки эпохи эллинизма: успешное измерение размеров Солнца, Луны и Земли, а также расстояний от Земли до Солнца и Луны. Глава 8 посвящена задачам анализа и предсказания видимого движения планет – проблеме, которая оставалась до конца не решенной астрономами и в Средних веках и решение которой в конечном итоге породило современную науку.

6. Практическая польза астрономии

Даже в доисторические времена люди, должно быть, ориентировались по небу как по компасу, часам и календарю. Трудно не заметить, что солнце встает каждое утро примерно в одной и той же стороне света; что можно определить, скоро ли наступит ночь, глядя, как высоко солнце над горизонтом, и что теплая погода наступает в то время года, когда дни длиннее.

Известно, что звезды стали использовать для подобных целей довольно рано. Около III тыс. до н. э. древние египтяне знали, что разлив Нила – важнейшее событие для сельского хозяйства – совпадает с днем гелиакического восхода звезды Сириус. Это тот день в году, когда Сириус в первый раз становится виден в лучах зари перед восходом солнца; в предшествующие дни он вообще не виден, а в последующие дни появляется на небе все раньше и раньше, задолго до рассвета. В VI в. до н. э. Гомер в своей поэме сравнивает Ахилла с Сириусом, который виднеется высоко в небе на исходе лета:

Словно звезда, что под осень с лучами огнистыми всходит

И, между звезд неисчетных горящая в сумраках ночи

(Псом Ориона ее нарицают сыны человеков),

Всех светозарнее блещет, но знаменьем грозным бывает;

Злые она огневицы наносит смертным несчастным…

Позже поэт Гесиод в поэме «Труды и дни» советовал земледельцам собирать виноград в дни гелиакического восхода Арктура; пахать следовало в дни так называемого космического захода звездного скопления Плеяды. Так называется день в году, когда это скопление в первый раз садится за горизонт в последние минуты перед восходом солнца; до этого солнце уже успевает подняться, когда Плеяды еще высоко на небе, а после этого дня они заходят раньше, чем встает солнце. После Гесиода календари, называемые «парапегма», в которых для каждого дня давались моменты восхода и захода хорошо заметных звезд, получили широкое распространение в древнегреческих городах-государствах, которые не имели другого общепринятого способа отмечать дни.

Наблюдая темными ночами звездное небо, не засвеченное огнями современных городов, жители цивилизаций древности ясно видели, что за рядом исключений, о которых мы скажем позже, звезды не меняют своего взаимного расположения. Поэтому созвездия не изменяются из ночи в ночь и из года в год. Но при этом весь свод этих «неподвижных» звезд каждую ночь поворачивается с востока на запад вокруг особой точки на небе, указывающей точно на север, которую назвали северным полюсом мира. В терминах нашего дня это та точка, куда направлена ось вращения Земли, если продлить ее из северного полюса Земли в небо.

Эти наблюдения сделали звезды с древнейших времен полезными для моряков, которые по ним определяли расположение сторон света ночью. Гомер описывает, как Одиссей по дороге домой в Итаку был пленен нимфой Калипсо на ее острове в западном Средиземноморье и оставался в плену, пока Зевс не приказал ей отпустить путешественника. Напутствуя Одиссея, Калипсо советует ему ориентироваться по звездам:

Руль обращая, он бодрствовал; сон на него не спускался

Очи, и их не сводил […] с Медведицы, в людях еще Колесницы

Имя носящей и близ Ориона свершающей вечно

Круг свой, себя никогда не купая в водах океана.

С нею богиня богинь повелела ему неусыпно

Путь соглашать свой, ее оставляя по левую руку.

Медведица – это, конечно же, созвездие Большой Медведицы, также известное древним грекам под названием Колесница. Она располагается недалеко от северного полюса мира. По этой причине на широтах Средиземноморья Большая Медведица никогда не заходит («… себя никогда не купая в водах океана», как выразился Гомер) и всегда видна ночью в более или менее северном направлении. Держа Медведицу по левому борту, Одиссей мог постоянно сохранять курс на восток, в Итаку.

Некоторые древнегреческие наблюдатели поняли, что среди созвездий есть и более удобные ориентиры. В биографии Александра Великого, созданной Луцием Флавием Аррианом, упоминается, что, хотя большинство мореходов предпочитало определять север по Большой Медведице, финикийцы, настоящие морские волки Древнего мира, с этой целью пользовались созвездием Малой Медведицы – не таким ярким, как Большая Медведица, но ближе расположенным на небе к полюсу мира. Поэт Каллимах из Кирены, чьи слова приводит Диоген Лаэртский, заявлял, что способ искать полюс мира по Малой Медведице придумал еще Фалес.

Солнце тоже совершает днем видимый путь по небу с востока на запад, двигаясь вокруг северного полюса мира. Конечно, днем звезды обычно не видны, но, по всей видимости, Гераклити, возможно, его предшественники поняли, что их свет теряется в сиянии солнца. Некоторые звезды можно видеть незадолго до рассвета или вскоре после заката солнца, когда его положение на небесной сфере очевидно. Положение этих звезд в течение года меняется, и отсюда ясно, что Солнце не находится в одной и той же точке по отношению к звездам. Точнее, как было хорошо известно еще в древнем Вавилоне и Индии, вдобавок к видимому ежедневному вращению с востока на запад вместе со всеми звездами, Солнце также совершает оборот за год в обратную сторону, с запада на восток, вдоль пути, известного как зодиак, на котором расположены традиционные зодиакальные созвездия: Овен, Телец, Близнецы, Рак, Лев, Дева, Весы, Скорпион, Стрелец, Козерог, Водолей и Рыбы. Как мы увидим, Луна и планеты тоже перемещаются по этим созвездиям, хотя и не по одинаковым путям. Тот путь, который проделывает через них именно Солнце, называется эклиптикой .

Поняв, что такое зодиакальные созвездия, легко определить, где сейчас находится Солнце среди звезд. Надо лишь посмотреть, какое из созвездий зодиака видно выше всех на небе в полночь; Солнце будет находиться в том созвездии, которое напротив данного. Утверждают, что Фалес рассчитал, что один полный оборот Солнца по зодиаку занимает 365 дней.

Наблюдающий с Земли может полагать, что звезды расположены на твердой сфере, окружающей Землю, полюс мира которой расположен над северным полюсом Земли. Но зодиак не совпадает с экватором этой сферы. Анаксимандру приписывается открытие того, что зодиак располагается под углом 23,5° по отношению к небесному экватору, причем созвездия Рак и Близнецы находятся ближе всего к северному полюсу мира, а Козерог и Стрелец – дальше всего от него. Сейчас мы знаем, что этот наклон, обуславливающий смену времен года, существует потому, что ось вращения Земли не перпендикулярна плоскости орбиты Земли вокруг Солнца, которая, в свою очередь, довольно точно совпадает с той плоскостью, в которой движутся почти все тела Солнечной системы. Отклонение земной оси от перпендикуляра составляет угол в 23,5°. Когда в Северном полушарии лето, солнце находится в той стороне, куда наклонен северный полюс Земли, а когда зима – в противоположной.

Астрономия как точная наука началась с применения устройства, известного как гномон, с помощью которого стало возможным измерять видимое движение солнца по небу. Епископ Евсевий Кесарийский в IV в. писал, что гномон изобрел Анаксимандр, но Геродот приписывал заслугу его создания вавилонянам. Это всего лишь стержень, вертикально установленный на освещаемой солнцем плоской площадке. С помощью гномона можно точно сказать, когда наступает полдень, – в этот момент солнце стоит на небе выше всего, поэтому гномон отбрасывает самую короткую тень. В любом месте земли к северу от тропиков в полдень солнце расположено точно на юге, и значит, тень от гномона указывает в этот момент точно на север. Зная это, легко разметить площадку по тени гномона, нанеся на нее направления на все стороны света, и она станет служить компасом. Также гномон может работать как календарь. Весной и летом солнце восходит немного севернее точки востока на горизонте, а осенью и зимой – южнее нее. Когда тень гномона на рассвете показывает точно на запад, солнце встает точно на востоке, и значит, сегодня день одного из двух равноденствий: или весеннего, когда зима сменяется весной, или осеннего, когда лето оканчивается и приходит осень. В день летнего солнцестояния тень гномона в полдень самая короткая, в день зимнего – соответственно, самая длинная. Солнечные часы похожи на гномон, но устроены иначе – их стержень параллелен оси Земли, а не вертикальной линии, и тень от стержня каждый день, в одно и то же время указывает в одном и том же направлении. Поэтому солнечные часы, собственно, и есть часы, но их нельзя использовать как календарь.

Гномон – прекрасный пример важной связи между наукой и техникой: техническое приспособление, придуманное с практической целью, которое дает возможность совершать научные открытия. С помощью гномона стал доступным точный подсчет дней в каждом из времен года – промежуток времени от одного равноденствия до солнцестояния и затем до следующего равноденствия. Так, Евктемон, живший в Афинах современник Сократа, открыл, что длительности времен года не совпадают в точности. Это оказалось неожиданным, если считать, что Солнце движется вокруг Земли (или Земля вокруг Солнца) по правильной окружности с Землей (или Солнцем) в центре с постоянной скоростью. Исходя из этого предположения, все времена года должны быть строго одинаковой длины. Веками астрономы пытались понять причину их фактического неравенства, но правильное объяснение этой и других аномалий появилось лишь в XVII в., когда Иоганн Кеплер понял, что Земля обращается вокруг Солнца по орбите, которая является не кругом, а эллипсом, и Солнце расположено не в его центре, а смещено в точку, которая называется фокусом. При этом движение Земли то ускоряется, то замедляется по мере приближения или удаления от Солнца.

Луна для земного наблюдателя тоже вращается вместе со звездным небом каждую ночь с востока на запад вокруг северного полюса мира и так же, как Солнце, медленно движется по зодиакальному кругу с запада на восток, но ее полный оборот по отношению к звездам, «на фоне» которых он происходит, занимает чуть больше 27 суток, а не год. Поскольку для наблюдателя Солнце движется по зодиаку в ту же сторону, что и Луна, но медленнее, проходит около 29,5 суток между моментами, когда Луна оказывается в том же положении по отношению к Солнцу (на самом деле 29 суток 12 часов 44 минуты и 3 секунды). Так как фазы Луны зависят от взаимного расположения Солнца и Луны, именно этот интервал в 29,5 суток и есть лунный месяц, то есть время, проходящее от одного новолуния до другого. Давно было замечено, что лунные затмения происходят в фазе полнолуния и их цикл повторяется каждые 18 лет, когда видимый путь Луны на фоне звезд пересекается с путем Солнца.

В некотором отношении Луна более удобна для календаря, чем Солнце. Наблюдая фазу Луны в какую-либо ночь, можно приблизительно сказать, сколько дней прошло с момента последнего новолуния, и это гораздо более точный способ, чем пытаться определять время года, просто глядя на солнце. Поэтому лунные календари были очень распространены в Древнем мире и до сих пор находят применение – например, таков исламский религиозный календарь. Но, само собой, для того, чтобы строить планы в сельском хозяйстве, мореходстве или военном деле, надо уметь предугадывать смену времен года, а она происходит под влиянием Солнца. К сожалению, в году не целое число лунных месяцев – год примерно на 11 суток длиннее, чем 12 полных лунных месяцев, и по этой причине дата любого солнцестояния или равноденствия не может оставаться одной и той же в календаре, основанном на смене фаз Луны.

Другая известная сложность заключается в том, что сам год занимает не целое число суток. Во времена Юлия Цезаря было принято считать каждый четвертый год високосным. Но это не решило проблему полностью, поскольку год длится не в точности 365 суток с четвертью, а на 11 минут дольше.

История помнит бессчетные попытки создать календарь, который учитывал бы все указанные сложности – их было так много, что нет смысла говорить здесь обо всех. Фундаментальный вклад в решение этого вопроса сделал в 432 г. до н. э. афинянин Метон, который, возможно, был коллегой Евктемона. Используя, вероятно, вавилонские астрономические хроники, Метон определил, что 19 лет точно соответствуют 235 лунным месяцам. Погрешность составляет лишь 2 часа. Поэтому можно создать календарь, но не на один год, а на 19 лет, в котором и время года, и фаза Луны окажутся точно определенными для каждого дня. Дни календаря будут повторяться каждые 19 лет. Но поскольку 19 лет почти точно равняются 235 лунным месяцам, этот промежуток на треть суток короче, чем ровно 6940 дней, и по этой причине Метон предписал каждые несколько 19-летних циклов выбрасывать один день из календаря.

Усилия астрономов согласовать солнечные и лунные календари хорошо иллюстрирует определение дня Пасхи. Никейский собор в 325 г. объявил, что Пасху следует праздновать каждый год в воскресенье после первого полнолуния, следующего за весенним равноденствием. В период правления императора Феодосия I Великого было установлено законом, что празднование Пасхи в неправильный день строго карается. К несчастью, точная дата наблюдения весеннего равноденствия не всегда одна и та же в различных точках земли. Чтобы избежать ужасных последствий от того, что кто-то где-то отмечает Пасху не в тот день, возникла необходимость назначить какой-то из дней точным днем весеннего равноденствия, а также договориться, когда именно случается следующее за ним полнолуние. Римско-католическая церковь в позднеантичный период стала пользоваться для этого Метоновым циклом, в то время как монашеские ордена Ирландии приняли за основу более ранний иудейский 84-летний цикл. Вспыхнувшая в XVII в. борьба между миссионерами Рима и монахами Ирландии за контроль над английской церковью была в основном спровоцирована спором из-за точной даты Пасхи.

До наступления Нового времени создание календарей было одним из основных занятий астрономов. В итоге в 1582 г. был создан и при покровительстве папы Григория XIII введен в употребление общепринятый в наши дни календарь. Для определения дня Пасхи теперь считается, что весеннее равноденствие всегда происходит 21 марта, но только это 21 марта по григорианскому календарю в западном мире и тот же день, но по юлианскому календарю, в странах, исповедующих православие. В результате в разных частях мира Пасху празднуют в разные дни.

Хотя астрономия была полезной наукой уже в Классическую эпоху Эллады, на Платона это не производило никакого впечатления. В диалоге «Государство» есть иллюстрирующее его точку зрения место в разговоре Сократа с его оппонентом Главконом. Сократ утверждает, что астрономия должна быть обязательным предметом, которому надо обучать будущих царей-философов. Главкон легко соглашается с ним: «По-моему, да, потому что внимательные наблюдения за сменой времен года, месяцев и лет пригодны не только для земледелия и мореплавания, но не меньше и для руководства военными действиями». Однако Сократ объявляет эту точку зрения наивной. Для него смысл астрономии заключается в том, что «… в науках этих очищается и вновь оживает некое орудие души каждого человека, которое другие занятия губят и делают слепым, а между тем сохранить его в целости более ценно, чем иметь тысячу глаз, ведь только при его помощи можно увидеть истину». Такое интеллектуальное высокомерие было менее характерно для александрийской школы, чем для афинской, но даже в работах, к примеру, философа Филона Александрийского в I в. отмечается, что «воспринимаемое умом всегда выше всего того, что воспринимается и видится чувствами». К счастью, хотя бы и под давлением практической необходимости, астрономы постепенно отучились полагаться на один лишь собственный интеллект.

В греческой науке твердо установилось мнение (с различными, конечно, вариациями), что Земля подобна плоскому или выпуклому диску, окруженному океаном. От этой точки зрения многие греческие мыслители не отказались даже тогда, когда в эпоху Платона и Аристотеля, казалось, возобладали представления о шарообразности Земли. Увы, уже в те далекие времена прогрессивная идея пробивала себе дорогу с большим трудом, требовала от своих сторонников жертв, но, к счастью, тогда еще «не казался ересью талант», а «в аргументах не ходил сапог».

Идея диска (барабана или даже цилиндра) была очень удобна для подтверждения широко распространенного убеждения о срединном положении Эллады. Она же была вполне приемлема для изображения суши, плавающей в океане.

В пределах дискообразной (а позднее шарообразной) Земли выделялась ойкумена. Что по - древнегречески означает вся обитаемая земля, вселенная. Обозначение одним словом двух, казалось бы, разных понятий (для греков тогда они представлялись одно-порядковыми) глубоко симптоматично.

В древности вопрос о том, движется ли Земля вокруг Солнца, был попросту богохульным. Как знаменитые ученые, так и простые люди, у которых картина неба не вызывала особых размышлений, были искренне убеждены, что Земля неподвижна и представляет собой центр Вселенной. Тем не менее, современные историки могут назвать, по меньшей мере, одного ученого древности, который усомнился в общепринятом и попытался разработать теорию, согласно которой Земля движется вокруг Солнца.

Аристарх задался вопросом о том, какого расстояние от Земли до небесных тел, и каковы их размеры. Аристарх пошел своим путем, совершенно правильным точки зрения современной науки. Он внимательно следил за Луной и сменой ее фаз. В момент наступления фазы первой четверти он измерил угол между Луной, Землей и Солнцем. Если это сделать достаточно точно, то в задаче останутся только вычисления. В этот момент Земля, Луна и Солнце образуют прямоугольный треугольник, а, как известно из геометрии, сумма углов в нем составляет 180 градусов. В таком случае второй острый угол Земля - Солнце - Луна (угол ЗСЛ) получается равным.

Возникновение геометрии

С VII века до н. э. по I век н. э. геометрия как наука бурно развивалась в Древней Греции. В этот период происходило не только накопление различных геометрических сведений, но и отрабатывалась методика доказательств геометрических утверждений, а также делались первые попытки сформулировать основные первичные положения (аксиомы) геометрии, из которых чисто логическими рассуждениями выводится множество различных геометрических утверждений. Уровень развития геометрии в Древней Греции отражен в сочинении Евклида «Начала».

В этой книге впервые была сделана попытка дать систематическое построение планиметрии на базе основных неопределяемых геометрических понятий и аксиом (постулатов).

Особое место в истории математики занимает пятый постулат Евклида (аксиома о параллельных прямых). Долгое время математики безуспешно пытались вывести пятый постулат из остальных постулатов Евклида и лишь в середине XIX века благодаря исследованиям Н. И. Лобачевского, Б. Римана и Я. Бойяи стало ясно, что пятый постулат не может быть выведен из остальных, а система аксиом, предложенная Евклидом, не единственно возможная.

«Начала» Евклида оказали огромное влияние на развитие математики. Эта книга на протяжении более чем двух тысяч лет была не только учебником по геометрии, но и служила отправным пунктом для очень многих математических исследований, в результате которых возникли новые самостоятельные разделы математики.

Астрономия Древней Греции

Астрономия Древней Греции - астрономические познания и взгляды тех людей, которые писали на древнегреческом языке, независимо от географического региона: сама Эллада , эллинизированные монархии Востока, Рим или ранняя Византия . Охватывает период с VI века до н. з. по V век н. э. Древнегреческая астрономия является одним из важнейших этапов развития не только астрономии как таковой, но и науки вообще. В трудах древнегреческих учёных находятся истоки многих идей, лежащих в основании науки Нового времени. Между современной и древнегреческой астрономией существует отношение прямой преемственности, в то время как наука других древних цивилизаций оказала влияние на современную только при посредничестве греков.

Введение

Историография древнегреческой астрономии

За небольшими исключениями , до нас не дошли специальные труды античных астрономов, и мы можем восстанавливать их достижения в основном на основании сочинений философов, не всегда имевших адекватное представление о тонкостях научных теорий и к тому же далеко не всегда являвшихся современниками научных достижений, о которых они пишут в своих книгах. Часто при реконструкции истории античной астрономии используются труды астрономов средневековой Индии , поскольку, как полагает большинство современных исследователей, индийская средневековая астрономия в значительной мере базируется на греческой астрономии доптолемеева (и даже догиппархова) периода . Тем не менее, у современных историков пока ещё нет однозначного представления о том, как происходило развитие древнегреческой астрономии.

Традиционная версия античной астрономии делает основной упор на объяснение иррегулярности планетных движений в рамках геоцентрической системы мира . Считается, что большую роль в развитии астрономии сыграли досократики , сформулировавшие представление о природе как о самостоятельном бытии и тем самым давшие философское обоснование поискам внутренних закономерностей жизни природы. Однако ключевой фигурой при этом оказывается Платон (V-IV вв. до н. э.), который поставил перед математиками задачу выразить видимые сложные движения планет (включая попятные движения) как результат сложения нескольких простых движений, в качестве которых представлялись равномерные движения по кругу. В обосновании этой программы большую роль сыграло учение Аристотеля . Первой попыткой решить «задачу Платона» стала теория гомоцентрических сфер Евдокса , за которой последовала теория эпициклов Аполлония Пергского . При этом ученые не столько стремились объяснять небесные явления, сколько рассматривали их как повод для абстрактных геометрических задач и философских спекуляций . Соответственно, астрономы практически не занимались развитием методики наблюдений и созданием теорий, способных предсказывать те или иные небесные явления. В этом, как считают, греки сильно уступали вавилонянам , которые с давних пор изучали закономерности движения небесных тел. Согласно этой точке зрения, решительный перелом в античной астрономии произошёл только после того, как в их руки попали результаты наблюдений вавилонских астрономов (что случилось благодаря завоеваниям Александра Македонского). Только тогда греки почувствовали вкус к пристальному наблюдению звёздного неба и применению геометрии к вычислению положений светил. Первым на этот путь, как считается, вступил Гиппарх (вторая половина II в. до н. э.), построивший первые модели движения Солнца и Луны, не только удовлетворяющие требованиям философов, но и объясняющие данные наблюдений. С этой целью он разработал новый математический аппарат - тригонометрию . Кульминацией античной астрономии явилось создание птолемеевой теории движения планет (II в. н. э.).

Согласно альтернативной точке зрения, проблема построения планетной теории вообще не входила в число основных задач древнегреческих астрономов. По мнению сторонников этого подхода, в течение длительного времени греки либо вообще не знали о попятных движениях планет, либо не придавали этому особого значения . Главной задачей астрономов была разработка календаря и методов определения времени по звёздам . Основополагающая роль при этом приписывается Евдоксу , но не столько как создателю теории гомоцентрических сфер, сколько как разработчику концепции небесной сферы . По сравнению со сторонниками предыдущей точки зрения, ещё более фундаментальной оказывается роль Гиппарха и особенно Птолемея , поскольку задача построения теории видимых движений светил на основании наблюдательных данных связывается именно с этими астрономами.

Наконец, существует и третья точка зрения, являющаяся, в некотором смысле, противоположной второй. Развитие математической астрономии её сторонники связывают с пифагорейцами , которым приписывается и создание концепции небесной сферы, и постановка задачи построения теории попятных движений, и даже первая теория эпициклов . Сторонники этой точки зрения оспаривают тезис о неэмпирическом характере астрономии догиппархова периода, указывая на высокую точность астрономических наблюдений астрономов III века до н. э. и использование этих данных Гиппархом для построения своих теорий движения Солнца и Луны , широкое использование в космологии спекуляций о ненаблюдаемости параллаксов планет и звёзд ; некоторые результаты наблюдений греческих астрономов оказались доступными их вавилонским коллегам . Основы тригонометрии как математического фундамента астрономии также были заложены астрономами III века до н. э. Значительным стимулом для развития античной астрономии явилось создание в III веке до н. э. Аристархом Самосским гелиоцентрической системы мира и её последующая разработка , в том числе с точки зрения динамики движения планет . Гелиоцентризм при этом считается хорошо укоренённым в античной науке, а отказ от него связывается с вненаучными, в частности религиозными и политическими, факторами.

Научный метод древнегреческой астрономии

Главным достижением астрономии древних греков следует считать геометризацию Вселенной, что включает в себя не только систематическое использование геометрических конструкций для представления небесных явлений, но и строгое логическое доказательство утверждений по образцу евклидовой геометрии.

Доминирующей методологией в античной астрономии была идеология «спасения явлений»: необходимо найти такую комбинацию равномерных круговых движений, с помощью которых может быть смоделирована любая неравномерность видимого движения светил. «Спасение явлений» мыслилось греками как чисто математическая задача, и не предполагалось, что найденная комбинация равномерных круговых движений имеет какое-либо отношение к физической реальности. Задачей физики считался поиск ответа на вопрос «Почему?», то есть установление истинной природы небесных объектов и причин их движений исходя из рассмотрения их субстанции и действующих во Вселенной сил; применение математики при этом не считалось необходимым .

Периодизация

Историю древнегреческой астрономии можно условно разделить на четыре периода, ассоциируемых с различными этапами развития античного общества :

  • Архаический (донаучный) период (до VI века до н. э.): становление полисной структуры в Элладе;
  • Классический период (VI-IV века до н. э.): расцвет древнегреческого полиса ;
  • Эллинистический период (III-II века до н. э.): расцвет крупных монархических держав, возникших на обломках империи Александра Македонского ; с точки зрения науки особую роль играет птолемеевский Египет со столицей в Александрии ;
  • Период упадка (I век до н. э. - I век н. э.), ассоциируемый с постепенным угасанием эллинистических держав и усилением влияния Рима ;
  • Имперский период (II-V века н. э.): объединение всего Средиземноморья, включая Грецию и Египет, под властью Римской империи .

Эта периодизация является достаточно схематичной. В ряде случаев трудно установить принадлежность того или иного достижения к тому или иному периоду. Так, хотя общий характер астрономии и науки вообще в классический и эллинистический период выглядит достаточно различным, в целом развитие в VI-II веках до н. э. представляется более-менее непрерывным. С другой стороны, ряд достижений науки последнего, имперского периода (особенно в области астрономического приборостроения и, возможно, теории) являются ни чем иным, как повторением успехов, достигнутых астрономами эллинистической эпохи.

Донаучный период (до VI века до н. э.)

Представление об астрономических познаниях греков этого периода дают поэмы Гомера и Гесиода : там упоминается ряд звёзд и созвездий, приводятся практические советы по использованию небесных светил для навигации и для определения сезонов года. Космологические представления этого периода целиком заимствовались из мифов : Земля считается плоской, а небосвод - твёрдой чашей, опирающейся на Землю .

Вместе с тем, согласно мнению некоторых историков науки, членам одного из эллинских религиозно-философских союзов того времени (орфикам) были известны и некоторые специальные астрономические понятия (например, представления о некоторых небесных кругах) . С этим мнением, однако, не согласно большинство исследователей.

Классический период (с VI - по IV век до н. э.)

Главными действующими лицами этого периода являются философы, интуитивно нащупывающие то, что впоследствии будет названо научным методом познания. Одновременно проводятся первые специализированные астрономические наблюдения, развивается теория и практика календаря; в основу астрономии впервые полагается геометрия, вводится ряд абстрактных понятий математической астрономии; делаются попытки отыскать в движении светил физические закономерности. Получили научное объяснение ряд астрономических явлений, доказана шарообразность Земли. Вместе с тем, связь между астрономическим наблюдениями и теорией ещё недостаточно прочна, слишком велика доля спекуляций, основанных на сугубо эстетических соображениях.

Источники

До нас дошли только два специализированных астрономических труда этого периода, трактаты О вращающейся сфере и О восходе и заходе звёзд Автолика из Питаны - учебники по геометрии небесной сферы , написанные в самом конце этого периода, около 310 года до н. э. К ним примыкает также поэма Феномены Арата из Сол (написанная, впрочем, в первой половине III века до н. э.), где содержится описание древнегреческих созвездий (поэтическое переложение не дошедших до нас трудов Евдокса Книдского , IV век до н. э.) .

Вопросы астрономического характера часто затрагиваются в трудах древнегреческих философов: некоторых диалогах Платона (особенно Тимей , а также Государство , Федон , Законы , Послезаконие ), трактатах Аристотеля (особенно О Небе , а также Метеорологика , Физика , Метафизика ). Труды философов более раннего времени (досократиков) до нас дошли только в очень отрывочном виде через вторые, а то и третьи руки.

Досократики, Платон

В этот период выработались два принципиально различных философских подхода в науке вообще и астрономии в частности. Первый из них зародился в Ионии и поэтому может быть назван ионийским. Для него характерны попытки найти материальную первооснову бытия, изменением которой философы надеялись объяснить всё многообразие природы . В движении небесных тел эти философы пытались увидеть проявления тех же сил, что действуют и на Земле. Первоначально ионийское направление было представлено философами города Милета Фалесом , Анаксимандром и Анаксименом . Этот подход нашёл своих сторонников и в других частях Эллады. К числу ионийцев относится Анаксагор из Клазомен , значительную часть жизни проведший в Афинах , в значительной мере уроженец Сицилии Эмпедокл из Акраганта . Своей вершины ионийский подход достиг в трудах античных атомистов: Левкиппа (родом, возможно, также из Милета) и Демокрита из Абдер, явившихся предтечами механистической философии.

Стремление дать причинное объяснение явлений природы было сильной стороной ионийцев. В настоящем состоянии мира они увидели результат действия физических сил, а не мифических богов и чудовищ . Ионийцы полагали небесные светила объектами, в принципе, той же природы, что и земные камни, движением которых управляют те же силы, что действуют на Земле. Cуточное вращение небосвода они считали реликтом изначального вихревого движения, охватывавшего всю материю Вселенной. Философы-ионийцы были первыми, кого назвали физиками. Однако недостатком учений ионийских натурфилософов была попытка создать физику без математики. Ионийцы не увидели геометрическую основу Космоса .

Второе направление ранней греческой философии можно назвать италийским, поскольку оно получило первоначальное развитие в греческих колониях италийского полуострова. Его основоположник Пифагор основал знаменитый религиозно-философский союз, представители которого, в отличие от ионийцев, видели основу мира в математической гармонии, точнее, в гармонии чисел, стремясь при этом к единению науки и религии. Небесные светила они считали богами. Это обосновывалось следующим образом: боги - это совершенный разум, для них характерен наиболее совершенный вид движения; таковым является движение по окружности, поскольку оно вечное, не имеет ни начала, ни конца и все время переходит само в себя. Как показывают астрономические наблюдения, небесные тела движутся по окружностям, следовательно, они являются богами . Наследником пифагорейцев был великий афинский философ Платон , который полагал весь Космос созданным идеальным божеством по своему образу и подобию. Хотя пифагорейцы и Платон верили в божественность небесных светил, для них не была характерна вера в астрологию : известен крайне скептический отзыв о ней Евдокса , ученика Платона и последователя философии пифагорейцев .

Стремление поисков математических закономерностей в природе было сильной стороной италийцев. Характерная для италийцев страсть к идеальным геометрическим фигурам позволила им первыми предположить, что Земля и небесные тела имеют форму шара и открыть дорогу к приложению математических методов к познанию природы. Однако полагая небесные тела божествами, они практически полностью изгнали с небес физические силы.

Аристотель

Сильные стороны этих двух исследовательских программ, ионийской и пифагорейской, дополняли друг друга. Попыткой их синтеза может рассматриваться учение Аристотеля из Стагира . Аристотель разделил Вселенную на две радикально различные части, нижнюю и верхнюю (подлунную и надлунную области, соответственно). Подлунная (т.е. более близкая к центру Вселенной) область напоминает построения философов-ионийцев доатомистического периода: она состоит из четырех элементов - земли, воды, воздуха, огня. Это область изменчивого, непостоянного, преходящего - того, что не может быть описано на языке математики. Напротив, надлунная область - это область вечного и неизменного, в целом соответствующая пифагорейско-платоновскому идеалу совершенной гармонии. Её составляет эфир - особый вид материи, не встречающейся на Земле.

Хотя Аристотель не называл небесные светила богами, он полагал их имеющими божественную природу, поскольку для составляющего их элемента, эфира , характерно равномерное движение по окружности вокруг центра мира; это движение является вечным, поскольку на окружности нет никаких граничных точек .

Практическая астрономия

До нас дошла только фрагментарная информация о методах и результатах наблюдений астрономов классического периода. Исходя из доступных источников, можно предположить, что одним из основных объектов их внимания являлись восходы звёзд, поскольку результаты таких наблюдений можно было использовать для определения времени ночью. Трактат с данными таких наблюдений составил Евдокс Книдский (вторая половина IV века до н. э.); поэт Арат из Сол облёк трактат Евдокса в поэтическую форму.

Об астрономических инструментах греков классического периода практически ничего неизвестно. Про Анаксимандра Милетского сообщали, что для распознавания равноденствий и солнцестояний он использовал гномон - древнейший астрономический инструмент, представляющий собой вертикально расположенный стержень. Евдоксу приписывают и изобретение «паука» - основного конструктивного элемента астролябии .

Сферические солнечные часы

Для исчисления времени днём, по всей видимости, часто использовались солнечные часы . Сначала были изобретены сферические солнечные часы (скафэ), как наиболее простые. Усовершенствований конструкции солнечных часов также приписывалось Евдоксу . Вероятно, это было изобретение одной из разновидностей плоских солнечных часов.

Философы-ионийцы полагали, что движением небесных светил управляют силы, аналогичные тем, что действуют в земном масштабе. Так, Эмпедокл , Анаксагор , Демокрит полагали, что небесные тела не падают на Землю, поскольку их удерживает центробежная сила . Италийцы (пифагорейцы и Платон) считали, что светила, будучи богами, движутся сами по себе, как живые существа.

Среди философов были значительные разногласия насчёт того, что находится вне Космоса. Некоторые философы считали, что там располагается бесконечное пустое пространство; по мнению Аристотеля , вне Космоса нет ничего, даже пространства; атомисты Левкипп , Демокрит и их сторонники полагали, что за нашим миром (ограниченным сферой неподвижных звёзд) находятся другие миры. Наиболее близкими к современным были взгляды Гераклида Понтийского , согласно которому неподвижные звёзды - это и есть другие миры, располагающиеся в бесконечном пространстве.

Объяснение астрономических явлений и природы небесных тел

Классический период характеризуется широким распространением спекуляций о природе небесных тел. Анаксагор из Клазомен (V век до н. э.) первым предположил, что Луна светит отражённым светом Солнца и на этой основе впервые в истории дал правильное объяснение природы лунных фаз и солнечных и лунных затмений. Солнце Анаксагор считал гигантским камнем (величиной с Пелопоннес), раскалённым за счёт трения о воздух (за что философ чуть было не подвергся смертной казни, поскольку эта гипотеза была сочтена противоречащей государственной религии). Эмпедокл полагал Солнце не самостоятельным объектом, а отражением на небосводе Земли, освещённой небесным огнём. Пифагореец Филолай полагал, что Солнце является прозрачным сферическим телом, светящимся потому, что преломляет свет небесного огня; то, что мы видим в качестве дневного светила, это изображение, получающееся в атмосфере Земли. Некоторые философы (Парменид , Эмпедокл) полагали, что яркость дневного неба обусловлена тем, что небосвод состоит из двух полусфер, светлой и тёмной, период обращений которых вокруг Земли составляет сутки, как и период обращения Солнца. Аристотель полагал, что принимаемое нами излучение небесных тел порождается не ими самими, а нагреваемым ими воздухом (частью подлунного мира) .

Большое внимание греческих учёных привлекали кометы . Пифагорейцы считали их разновидностью планет. Такого же мнения придерживался и Гиппократ Хиосский , полагавший также, что хвост принадлежит не самой комете, а иногда приобретается в её блужданиях в пространстве. Эти мнения были отвергнуты Аристотелем , который считал кометы (как и метеоры) воспламенением воздуха в верхней части подлунного мира. Причина этих воспламенений заключается в неоднородности окружающего Землю воздуха, наличия в нём легко воспламеняющихся включений, которые вспыхивают из-за передачи тепла от вращающегося над подлунным миром эфира .

По мнению Аристотеля, ту же природу имеет и Млечный Путь ; вся разница в том, что в случае комет и метеоров свечение возникает из-за нагрева воздуха одной конкретной звездой, в то время как Млечный Путь возникает из-за нагрева воздуха всей надлунной областью . Некоторые пифагорейцы вместе с Энопидом Хиосским считали Млечный Путь выжженной траекторией, по которому некогда обращалось Солнце. Анаксагор полагал Млечный Путь кажущимся скоплением звёзд, находящимся в том месте, где на небосвод падает земная тень. Совершенно правильную точку зрения высказал Демокрит , который полагал, что Млечный Путь - это совместное свечение многих расположенных рядом звёзд.

Математическая астрономия

Главным достижением математической астрономии рассматриваемого периода является концепция небесной сферы . Вероятно, изначально это было чисто умозрительное представление, основанное на соображениях эстетики. Однако позднее было осознано, что явления восхода и захода светил, их кульминации действительно происходят таким образом, будто бы звезды были жёстко скреплены со сферическим небосводом, вращающимся вокруг наклонённой к земной поверхности оси. Таким образом естественно объяснялись основные особенности движений звёзд: каждая звезда всегда восходит в одной и той же точке горизонта, разные звезды за одно и то же время проходят по небу разные дуги, причём чем ближе звезда к полюсу мира, тем меньшую дугу она проходит за одно и то же время. Необходимым этапом работы по созданию этой теории должно было стать осознание того, что размер Земли неизмеримо мал по сравнению с размером небесной сферы, что давало возможность пренебрегать суточными параллаксами звёзд. До нас не дошли имена людей, совершивших эту важнейшую интеллектуальную революцию; скорее всего, они принадлежали к пифагорейской школе. Наиболее раннее дошедшие до нас руководство по сферической астрономии принадлежат Автолику из Питаны (около 310 г. до н. э.). Там доказано, в частности, что точки вращающейся сферы, не лежащие на её оси, при равномерном вращении описывают параллельные круги, перпендикулярные оси, причём за равное время все точки поверхности описывают подобные дуги .

Другим важнейшим достижением математической астрономии классической Греции является введение представления об эклиптике - большом круге, наклонённом по отношению к небесному экватору, по которому совершает своё движение среди звёзд Солнце. Вероятно, это представление было введено знаменитым геометром Энопидом Хиосским , который также сделал и первую попытку измерения наклона эклиптики к экватору (24°) .

Система из четырёх концентрических сфер, использовавшаяся для моделирования движения планет в теории Евдокса. Цифрами обозначены сферы, отвечавшие за суточное вращение небосвода (1), за движение вдоль эклиптики (2), за попятные движения планеты (3 и 4). T - Земля, пунктирная линия изображает эклиптику (экватор второй сферы).

В основу геометрических теорий движения небесных тел древнегреческие астрономы положили следующий принцип: движение каждой планеты, Солнца и Луны является комбинацией равномерных круговых движений. Этот принцип, предложенный Платоном или ещё пифагорейцами , исходит из представления о небесных телах как о божествах, которым может быть присущ только самый совершенный вид движения - равномерное движение по окружности . Как считается, первую теорию движения небесных тел, основанную на этом принципе, предложил Евдокс Книдский . Это была теория гомоцентрических сфер - разновидность геоцентрической системы мира, в которой небесные тела считаются жёстко прикреплёнными к комбинации скреплённых между собой жёстких сфер с общим центром. Усовершенствованием этой теории занимался Каллипп из Кизика , а Аристотель положил её в основу своей космологической системы. Теория гомоцентрических сфер была впоследствии оставлена, так как предполагает неизменность расстояний от светил до Земли (каждое из светил движется по сфере, центр которой совпадает с центром Земли). Однако к концу классического периода уже было накоплено значительное количество свидетельств, что расстояния небесных тел от Земли на самом деле меняются: значительные изменения блеска некоторых планет, непостоянство углового диаметра Луны, наличие наряду с полными и кольцеобразных солнечных затмений.

Эллинистический период (III-II века до н. э.)

Важнейшую организующую роль в науке этого периода играет Александрийская библиотека и Мусейон . Хотя в начале эллинистического периода возникли две новые философские школы, стоиков и эпикурейцев , научная астрономия уже достигла уровня, который позволил ей развиваться практически не испытывая влияния со стороны тех или иных философских доктрин (не исключено, однако, что религиозные предрассудки, увязанные с философией стоицизма, оказали негативное влияние на распространение гелиоцентрической системы: см. ниже пример Клеанфа).

Астрономия становится точной наукой. Важнейшими задачами астрономов становятся: (1) установление масштабов мира исходя из теорем геометрии и данных астрономических наблюдений, а также (2) построение обладающих предсказательной силой геометрических теорий движения небесных тел. Высокого уровня достигает методика астрономических наблюдений. Объединение античного мира Александром Македонским делает возможным обогащение астрономии Греции за счёт достижений вавилонских астрономов. Вместе с тем, углубляется разрыв между целями астрономии и физики, не столь очевидный в предыдущем периоде.

В течение большей части эллинистического периода у греков не прослеживается влияние астрологии на развитие астрономии .

Источники

До нас дошло шесть трудов астрономов этого периода:

Достижения этого периода положены в основу двух элементарных учебников астрономии, Гемина (I век до н. э.) и Клеомедa (время жизни неизвестно, скорее всего между I веком до н. э. и II веком н. э.), известных под названием Введение в явления . О работах Гиппарха рассказывает Клавдий Птолемей в своём фундаментальном труде - Альмагесте (2-я половина II века н. э.). Кроме того, различные аспекты астрономии и космологии эллинистического периода освещаются в ряде комментаторских работ более поздних периодов.

Философский фундамент астрономии

Эллинистический период отмечен возникновенем новых философских школ, две из которых (эпикурейцев и стоиков) сыграли заметную роль в развитии космологии.

С целью усовершенствования календаря учёные эллинистической эпохи производили наблюдения солнцестояний и равноденствий: длина тропического года равна промежутку времени между двумя солнцестояниями или равноденствиями, делённому на полное число лет. Они понимали, что точность вычисления тем выше, чем больше промежуток между используемыми событиями. Наблюдениями такого рода занимались, в частности, Аристарх Самосский , Архимед Сиракузский , Гиппарх Никейский и ряд других астрономов, имена которых неизвестны.

Однако обычно открытие прецессии приписывается Гиппарху , который показал перемещение точек равноденствия среди звёзд в результате сопоставления координат некоторых звёзд, измеренных Тимохарисом и им самим. По Гиппарху, угловая скорость движения точек равноденствия составляет 1° в столетие. Такое же значение следует из величин звёздного и тропического года по Аристарху , восстановленного из Ватиканских манускриптов (на самом деле, величина прецессии составляет 1° за 72 года).

Во второй половине III века до н. э. александрийские астрономы также производили наблюдения положений планет. В их числе были Тимохарис а также астрономы, чьи имена нам неизвестны (все что мы о них знаем, это то, что для датировки своих наблюдений они использовали зодиакальный календарь Дионисия). Побудительные мотивы александрийских наблюдений не вполне ясны .

С целью определения географической широты в различных городах проводились наблюдения высоты Солнца во время солнцестояний. При этом достигалась точность порядка нескольких угловых минут, максимально достижимая невооружённым глазом . Для определения долготы использовались наблюдения лунных затмений (разность долгот между двумя пунктами равна разности местного времени, когда произошло затмение).

Экваториальное кольцо.

Астрономические инструменты. Вероятно, для наблюдения положения ночных светил использовалась диоптра , а для наблюдения Солнца - полуденный круг; весьма вероятно также использование астролябии (изобретение которой иногда приписывается Гиппарху ) и армиллярной сферы . По словам Птолемея , для определения моментов равноденствий Гиппарх использовал экваториальное кольцо.

Космология

Получив поддержку со стороны стоиков , геоцентрическая система мира продолжала оставаться основной космологической системой в эллинистический период. Сочинение по сферической астрономии, написанное Евклидом в начале III веке до н. э., также основано на геоцентрической точке зрения. Однако в первой половине этого столетия Аристарх Самосский предложил альтернативную, гелиоцентрическую систему мира , согласно которой

  • Солнце и звезды неподвижны,
  • Солнце расположено в центре мира,
  • Земля обращается вокруг Солнца за год и вокруг оси за сутки.

Исходя из гелиоцентрической системы и ненаблюдаемости годичных параллаксов звёзд, Аристарх сделал пионерский вывод, что расстояние от Земли до Солнца пренебрежимо мало по сравнению с расстоянием от Солнца до звёзд. Этот вывод с достаточной долей симпатии приводит Архимед в своём сочинении Исчисление песчинок (одном из основных источников нашей информации о гипотезе Аристарха), что можно считать косвенным признанием гелиоцентрической космологии сиракузским учёным . Возможно, в других своих трудах Архимед развивал иную модель устройства Вселенной, в которой Меркурий и Венера, а также Марс обращаются вокруг Солнца, которое, в свою очередь, движется вокруг Земли (при этом путь Марса вокруг Солнца охватывает Землю) .

Большинство историков науки полагает, что гелиоцентрическая гипотеза не получила сколько-нибудь значительной поддержки со стороны современников Аристарха и астрономов более позднего времени. Некоторые исследователи, однако, приводят ряд косвенных свидетельств о широкой поддержке гелиоцентризма античными астрономами . Тем не менее, известно имя только одного сторонника гелиоцентрической системы: вавилонянин Селевк , 1-я половина II века до н. э.

Есть основания полагать, что оценки расстояний до небесных тел исходя из ненаблюдаемости их суточных параллаксов делали и другие астрономы ; следует напомнить также вывод Аристарха о громадной удалённости звёзд, сделанный исходя из гелиоцентрической системы и ненаблюдаемости годичных параллаксов звёзд.

Определением расстояний до небесных светил занимались также Аполлоний Пергский и Архимед , однако об использованных ими методах ничего не известно. В одной из недавних попыток реконструкций работы Архимеда сделан вывод, что полученное им расстояние до Луны составляет около 62 радиусов Земли и довольно точно измерил относительные расстояния от Солнца до планет Меркурия, Венеры и Марса (основываясь при этом на модели, в которой эти планеты обращаются вокруг Солнца и вместе с ним - вокруг Земли) .

К этому следует добавить определение радиуса Земли Эратосфеном . С этой целью он измерил зенитное расстояние Солнца в полдень дня летнего солнцестояния в Александрии , получив результат 1/50 полного круга. Далее, Эратосфену было известно, что в городе Сиене в этот день Солнце находится точно в зените, то есть Сиен находится на тропике. Полагая эти города лежащими точно на одном меридиане и принимая расстояние между ними равными 5000 стадиев , а также считая лучи Солнца параллельными, Эратосфен получил длину земной окружности равной 250000 стадиев. Впоследствии Эратосфен увеличил эту величину до значения 252000 стадиев, более удобного для практических расчётов. Точность результата Эратосфена трудно оценить, поскольку величина использованного им стадия неизвестна. В большинстве современных работ стадий Эратосфена принимается равным 157,5 метров или 185 метров . Тогда его результат для длины земной окружности, в переводе на современные единицы измерения, окажется равным, соответственно, 39690 км (всего на 0,7 % меньше истинного значения), или 46620 км (на 17 % больше истинного значения).

Теории движения небесных тел

В рассматриваемый период были созданы новые геометрические теории движения Солнца, Луны и планет, в основу которых был положен принцип, согласно которому движение всех небесных тел является комбинацией равномерных круговых движений. Однако этот принцип выступал не в виде теории гомоцентрических сфер , как в науке предшествующего периода, а в виде теории эпициклов , согласно которому само светило совершает равномерное движение по малому кругу (эпициклу), центр которого равномерно перемещается вокруг Земли по большому кругу (деференту). Основы этой теории, как считается, заложил Аполлоний Пергский , живший в конце III - начале II века до н. э.

Ряд теорий движения Солнца и Луны построил Гиппарх . Согласно его теории Солнца, периоды движений по эпициклу и деференту одинаковы и равны одному году, их направления противоположны, в результате чего Солнце равномерно описывает в пространстве окружность (эксцентр), центр которой не совпадает с центром Земли. Это позволило объяснить неравномерность видимого движения Солнца по эклиптике. Параметры теории (отношение расстояний между центрами Земли и эксцентра, направление линии апсид) были определены из наблюдений. Аналогичная теория была создана для Луны, однако в предположении, что скорости движения Луны по деференту и эпициклу не совпадают. Эти теории позволили осуществлять предсказания затмений с точностью, недоступной более ранним астрономам.

Другие астрономы занимались созданием теорий движения планет. Трудность заключалась в том, что в движении планет имелись неравномерности двух видов:

  • неравенство относительно Солнца: у внешних планет - наличие попятных движений, когда планета наблюдается вблизи противостояния с Солнцем; у внутренних планет - попятные движения и «привязанность» этих планет к Солнцу;
  • зодиакальное неравенство: зависимость величины дуг попятных движений и расстояний между дугами от знака зодиака.

Для объяснения этих неравенств астрономы эпохи эллинизма привлекали сочетание движений по эксцентрическим кругам и эпициклам. Эти попытки были раскритикованы Гиппархом , который, однако, не предложил никакой альтернативы, ограничившись систематизацией доступных в его время данных наблюдений .

Прямоугольный треугольник Аристарха: взаимное расположение Солнца, Луны и Земли во время квадратуры

Главные успехи в развитии математического аппарата эллинистической астрономии были связаны с развитием тригонометрии . Необходимостью в развитии тригонометрии на плоскости была связана с потребностью в решении астрономических задач двух видов:

  • Определение расстояний до небесных тел (начиная по меньшей мере с Аристарха Самосского , занимавшегося проблемой определения расстояний и размеров Солнца и Луны),
  • Определение параметров системы эпициклов и/или эксцентров, представляющих движение светила в пространстве (согласно широко распространённому мнению, эта проблема впервые была сформулирована и решена Гиппархом при определении элементов орбит Солнца и Луны; возможно, аналогичными задачами занимались и астрономы более раннего времени, но результаты их трудов до нас не дошли).

В обоих случаях астрономам требовалось вычислять стороны прямоугольных треугольников при известных значениях двух его сторон и одного из улов (определённого исходя из данных астрономических наблюдений на земной поверхности). Первым дошедшим до нас сочинением, где ставилась и решалась эта математическая задача, был трактат Аристарха Самосского О величинах и расстояниях Солнца и Луны . В прямоугольном треугольнике, образованном Солнцем, Луной и Землёй во время квадратуры, требовалось вычислить величину гипотенузы (расстояние от Земли до Солнца) через катет (расстояние от Земли до Луны) при известном значении прилежащего угла (87°), что эквивалентно вычислению значения sin 3°. По оценке Аристарха , эта величина лежит в промежутке от 1/20 до 1/18. Попутно он доказал, в современных терминах, неравенство (содержащееся также в Исчислении песчинок Архимеда).

Историки не пришли к консенсусу насчет степени развития у астрономов эллинистического периода геометрии небесной сферы . Некоторые исследователи приводят доводы, что по меньшей мере во времена Гиппарха для записи результатов астрономических наблюдений использовалась эклиптическая или экваториальная система координат . Возможно, тогда были известны и некоторые теоремы сферической тригонометрии , которые могли использоваться для составления звёздных каталогов и в геодезии .

В работе Гиппарха содержится также признаки знакомства со стереографической проекцией , используемой при конструировании астролябий . Открытие стереографической проекции приписывается Аполлонию Пергскому ; во всяком случае, он доказал важную теорему, лежащую в её основе .

Период упадка (I век до н. э. - I век н. э.)

В этот период активность в области астрономической науки близка к нулю, зато вовсю цветёт пришедшая из Вавилона астрология . Как свидетельствуют многочисленные папирусы эллинистического Египта того периода, гороскопы составлялись не на основе геометрических теорий, разработанных греческими астрономами предшествующего периода, а на основе гораздо более примитивных арифметических схем вавилонских астрономов . Во II в. до н.э. возникло синтетическое учение, включавшее в себя вавилонскую астрологию, физику Аристотеля и учение стоиков о симпатической связи всего сущего, развитое Посидонием Апамейским . Его частью было представление об обусловленности земных явлений вращением небесных сфер: поскольку «подлунный» мир постоянно находится в состоянии вечного становления, в то время как «надлунный» мир находится в неизменном состоянии, второй является источником всех изменений, происходящих в первом .

Несмотря на отсутствие развития науки, существенной деградации также не происходит, свидетельством чего является дошедшие до нас добротных учебника Введение в явления Гемина (I век до н. э.) и Сферика Феодосия Вифинского (II или I век до н. э.). Последний является промежуточным по уровню между аналогичными трудами ранних авторов (Автолика и Евклида) и более поздним трактатом "Сферика" Менелая (I в. н.э.). Также до нас дошли ещё два небольших сочинения Феодосия: О жилищах , где приведено описание звёздного неба с точки зрения наблюдателей, находящихся на разных географических широтах, и О днях и ночах , где рассматривается движение Солнца вдоль эклиптики. Сохранялась и связанная с астрономией технология, на основе которой был создан механизм из Антикиферы - калькулятор астрономических явлений, созданный в I веке до н. э.

Имперский период (II-V века н. э.)

Астрономия постепенно возрождается, но с заметной примесью астрологии. В этот период создаются ряд обобщающих астрономических трудов. Однако новый расцвет стремительно сменяется застоем и затем новым кризисом, на этот раз ещё более глубоким, связанным с общим упадком культуры в период крушения Римской империи, а также с радикальным пересмотром ценностей античной цивилизации, произведённым ранним христианством.

Источники

Вопросы астрономии рассматриваются также в ряде трудов комментаторского характера, написанных в этот период (авторы: Теон Смирнский , II век н. э., Симпликий , V век н. э., Цензорин , III век н. э. , Папп Александрийский , III или IV век н. э., Теон Александрийский , IV век н. э., Прокл , V век н. э. и др.). Некоторые астрономические вопросы рассматриваются также в трудах энциклопедиста Плиния Старшего , философов Цицерона , Сенеки , Лукреция , архитектора Витрувия , географа Страбона , астрологов Манилия и Веттия Валента , механика Герона Александрийского , богослова Синезия Киренского .

Практическая астрономия

Трикветрум Клавдия Птолемея (из книги 1544 г.)

Задачей планетных наблюдений рассматриваемого периода является обеспечение численным материалом теорий движения планет, Солнца и Луны. С этой целью производили свои наблюдения Менелай Александрийский , Клавдий Птолемей и другие астрономы (по вопросу подлинности наблюдений Птолемея ведётся напряжённая дискуссия ). В случае Солнца, основные усилия астрономов по прежнему были направлены на точную фиксацию моментов равноденствий и солнцестояний. В случае Луны, наблюдались затмения (фиксировался точный момент наибольшей фазы и положение Луны среди звёзд), а также моменты квадратур. Для внутренних планет (Меркурия и Венеры), основной интерес представляли наибольшие элонгации, когда эти планеты находятся на наибольшем угловом расстоянии от Солнца. У внешних планет особый упор делался на фиксировании моментов противостояний с Солнцем и их наблюдении в промежуточные моменты времени, а также на изучении их попятных движений. Большое внимание астрономов привлекали также такие редкие явления, как соединения планет с Луной, звёздами и друг с другом.

Производились также наблюдения координат звёзд. Птолемей приводит в Альмагесте звёздный каталог, где, по его утверждению, каждую звезду он наблюдал самостоятельно. Не исключено, однако, что этот каталог почти целиком является каталогом Гиппарха с пересчитанными за счёт прецессии координатами звёзд.

Последние астрономические наблюдения в античности были произведены в конце V века Проклом и его учениками Гелиодором и Аммонием .

Математический аппарат астрономии

Продолжалось развитие тригонометрии. Менелай Александрийский (около 100 года н. э.) написал монографию Сферика в трёх книгах. В первой книге он изложил теорию сферических треугольников , аналогичную теории Евклида о плоских треугольниках, изложенную в I книге Начал . Кроме того, Менелай доказал теорему, для которой нет евклидового аналога: два сферических треугольника конгруэнтны (совместимы), если соответствующие углы равны. Другая его теорема утверждает, что сумма углов сферического треугольника всегда больше 180°. Вторая книга Сферики излагает применение сферической геометрии к астрономии. Третья книга содержит «теорему Менелая », известную также как «правило шести величин».

Самой значимой тригонометрической работой античности является птолемеев Альмагест . Книга содержит новые таблицы хорд. Для их вычислении хорд использовал (в главе X) теорему Птолемея (известную, впрочем, ещё Архимеду), которая утверждает: сумма произведений длин противоположных сторон выпуклого вписанного в круг четырёхугольника равна произведению длин его диагоналей. Из этой теоремы нетрудно вывести две формулы для синуса и косинуса суммы углов и ещё две для синуса и косинуса разности углов. Позднее Птолемей приводит аналог формулы синуса половинного угла для хорд.

Параметры движения планет по эпициклам и деферентам были определены из наблюдений (хотя до сих пор неясно, не были ли эти наблюдения сфальцифицированы). Точность птолемеевской модели составляет : для Сатурна - около 1/2°, Юпитера - около 10", Марса - более 1°, Венеры и особенно Меркурия - до нескольких градусов.

Космология и физика неба

В теории Птолемея предполагался следующий порядок следования светил с увеличением расстояния от Земли: Луна, Меркурий, Венера, Солнце, Марс, Юпитер, Сатурн, неподвижные звезды. При этом среднее расстояние от Земли росло с ростом периода обращения среди звёзд; по прежнему оставалась нерешённой проблема Меркурия и Венеры, у которых этот период равен солнечному (Птолемей не приводит достаточно убедительных аргументов, почему он помещает эти проблемы «ниже» Солнца, просто ссылаясь на мнение учёных более раннего периода). Все звезды считались находящимися на одной и той же сфере - сфере неподвижных звёзд. Для объяснения прецессии он был вынужден добавить ещё одну сферу, которая находится выше сферы неподвижных звёзд.

Эпицикл и деферент согласно теории вложенных сфер.

В теории эпициклов, в том числе у Птолемея , расстояние от планет до Земли менялось. Физическую картину, которая может стоять за этой теорией, описал Теон Смирнский (конец I - начало II века н. э.) в дошедшем до нас сочинении Математические понятия, полезные для чтения Платона . Это теория вложенных сфер, основные положения которой сводится к следующему. Представим себе две сделанные из твёрдого материала концентрические сферы, между которыми помещена маленькая сфера. Среднее арифметическое радиусов больших сфер является радиусом деферента, а радиус малой сферы - радиусом эпицикла. Вращение двух больших сфер заставит маленькую сферу вращаться между ними. Если поместить на экватор малой сферы планету, то её движение будет в точности таким, как в теории эпициклов; таким образом, эпицикл является экватором малой сферы.

Этой теории, с некоторыми модификациями, придерживался и Птолемей . Она описана в его труде Планетные гипотезы . Там отмечается, в частности, что максимальное расстояние до каждой из планет равно минимальному расстоянию до планеты, следующей за ней, то есть максимальное расстояние до Луны равно минимальному расстоянию до Меркурия и т. д. Максимальное расстояние до Луны Птолемей смог оценить с помощью метода, аналогичного методу Аристарха : 64 радиуса Земли. Это дало ему масштаб всей Вселенной. В результате вышло, что звезды расположены на расстоянии около 20 тысяч радиусов Земли. Птолемей также сделал попытку оценить размеры планет. В результате случайной компенсации ряда ошибок Земля у него оказалась средним по размерам телом Вселенной, а звезды имеющими примерно тот же размер, что и Солнце.

По мнению Птолемея, совокупность эфирных сфер, принадлежащих каждой из планет - это разумное одушевленное существо, где сама планета выполняет роль мозгового центра; исходящие от него импульсы (эманации) приводят в движение сферы, которые, в свою очередь, переносят планету. Птолемей приводит следующую аналогию: мозг птицы посылает в её тело сигналы, заставляющие двигаться крылья, несущие птицу по воздуху. При этом Птолемей отвергает точку зрения зрения Аристотеля о Перводвигателе как причине движения планет: небесные сферы совершают движения по своей воле, и только самая внешняя из них приводится в движение Перводвигателем .

В позднюю античность (начиная со II века н. э.) отмечается существенный рост влияния физики Аристотеля . Был составлен ряд комментариев к произведениям Аристотеля (Созиген , II в. н. э., Александр Афродисийский , конец II - начало III века н. э., Симпликий , VI в.). Наблюдается возрождение интереса к теории гомоцентрических сфер и попытки согласовать теорию эпициклов с физикой Аристотеля . Вместе с тем, некоторые философы выражали достаточно критическое отношение к тем или иным постулатам Аристотеля, особенно к его мнению о существовании пятого элемента - эфира (Ксенарх , I в. н. э., Прокл Диадох , V в., Иоанн Филопон , VI в.). Проклу принадлежат также и ряд критических замечания в адрес теории эпициклов.

Развивались также взгляды, выходящие за рамки геоцентризма. Так, Птолемей дискутирует с некоторыми учёными (не называя их по имени), которые предполагают суточное вращение Земли. Латинский автор V в. н. э. Марциан Капелла в сочинении Брак Меркурия и филологии описывает систему, в которой Солнце обращается по окружности вокруг Земли, а Меркурий и Венера - вокруг Солнца.

Наконец, в сочинениях ряда авторов той эпохи описаны представления, которые предвосхитили идеи учёных Нового времени. Так, один из участников диалога Плутарха О лике, видимом на диске Луны утверждает, что Луна не падает на Землю из-за действия центробежной силы (подобно предметам, вложенным в пращу), «ведь каждый предмет увлекается естественным ему движением, если его не отклоняет в сторону какая иная сила». В том же диалоге отмечается, что тяготение свойственно не только Земле, но и небесным телам, включая Солнце. Мотивом могла быть аналогия между формой небесных тел и Земли: все эти объекты имеют форму шара, а раз шарообразность Земли связана с её собственной гравитацией, то логично предположить, что и шарообразность других тел во Вселенной связана с той же причиной.