Химическое соединение с уникальной формулой. Простые и сложные вещества

Классификация неорганических веществ и их номенклатура основаны на наиболее простой и постоянной во времени характеристике - химическом составе , который показывает атомы элементов, образующих данное вещество, в их числовом отношении. Если вещество из атомов одного химического элемента, т.е. является формой существования этого элемента в свободном виде, то его называют простым веществом ; если же вещество из атомов двух или большего числа элементов, то его называют сложным веществом . Все простые вещества (кроме одноатомных) и все сложные вещества принято называть химическими соединениями , так как в них атомы одного или разных элементов соединены между собой химическими связями.

Номенклатура неорганических веществ состоит из формул и названий. Химическая формула - изображение состава вещества с помощью символов химических элементов, числовых индексов и некоторых других знаков. Химическое название - изображение состава вещества с помощью слова или группы слов. Построение химических формул и названий определяется системой номенклатурных правил .

Символы и наименования химических элементов приведены в Периодической системе элементов Д.И. Менделеева. Элементы условно делят на металлы инеметаллы . К неметаллам относят все элементы VIIIА-группы (благородные газы) и VIIА-группы (галогены), элементы VIА-группы (кроме полония), элементы азот, фосфор, мышьяк (VА-группа); углерод, кремний (IVА-группа); бор (IIIА-группа), а также водород. Остальные элементы относят к металлам.

При составлении названий веществ обычно применяют русские наименования элементов, например, дикислород, дифторид ксенона, селенат калия. По традиции для некоторых элементов в производные термины вводят корни их латинских наименований:

Например : карбонат, манганат, оксид, сульфид, силикат.

Названия простых веществ состоят из одного слова - наименования химического элемента с числовой приставкой, например:

Используются следующие числовые приставки :

Неопределенное число указывается числовой приставкой n - поли.

Для некоторых простых веществ используют также специальные названия, такие, как О 3 - озон, Р 4 - белый фосфор.

Химические формулы сложных веществ составляют из обозначения электроположительной (условных и реальных катионов) и электроотрицательной (условных и реальных анионов) составляющих, например, CuSO 4 (здесь Cu 2+ - реальный катион, SO 4 2 - - реальный анион) и PCl 3 (здесь P +III - условный катион, Cl -I - условный анион).

Названия сложных веществ составляют по химическим формулам справа налево. Они складываются из двух слов - названий электроотрицательных составляющих (в именительном падеже) и электроположительных составляющих (в родительном падеже), например:

CuSO 4 - сульфат меди(II)
PCl 3 - трихлорид фосфора
LaCl 3 - хлорид лантана(III)
СО - монооксид углерода

Число электроположительных и электроотрицательных составляющих в названиях указывают числовыми приставками, приведенными выше (универсальный способ), либо степенями окисления (если они могут быть определены по формуле) с помощью римских цифр в круглых скобках (знак плюс опускается). В ряде случаев приводят заряд ионов (для сложных по составу катионов и анионов), используя арабские цифры с соответствующим знаком.

Для распространенных многоэлементных катионов и анионов применяют следующие специальные названия:

H 2 F + - фтороний

C 2 2 - - ацетиленид

H 3 O + - оксоний

CN - - цианид

H 3 S + - сульфоний

CNO - - фульминат

NH 4 + - аммоний

HF 2 - - гидродифторид

N 2 H 5 + - гидразиний(1+)

HO 2 - - гидропероксид

N 2 H 6 + - гидразиний(2+)

HS - - гидросульфид

NH 3 OH + - гидроксиламиний

N 3 - - азид

NO + - нитрозил

NCS - - тиоционат

NO 2 + - нитроил

O 2 2 - - пероксид

O 2 + - диоксигенил

O 2 - - надпероксид

PH 4 + - фосфоний

O 3 - - озонид

VO 2 + - ванадил

OCN - - цианат

UO 2 + - уранил

OH - - гидроксид

Для небольшого числа хорошо известных веществ также используют специальные названия:

1. Кислотные и основные гидроксиды. Соли

Гидроксиды - тип сложных веществ, в состав которых входят атомы некоторого элемента Е (кроме фтора и кислорода) и гидроксогруппы ОН; общая формула гидроксидов Е(ОН) n , где n = 1÷6. Форма гидроксидов Е(ОН) n называется орто -формой; при n > 2 гидроксид может находиться также в мета -форме, включающей кроме атомов Е и групп ОН еще атомы кислорода О, например Е(ОН) 3 и ЕО(ОН), Е(ОН) 4 и Е(ОН) 6 и ЕО 2 (ОН) 2 .

Гидроксиды делят на две противоположные по химическим свойствам группы: кислотные и основные гидроксиды.

Кислотные гидроксиды содержат атомы водорода, которые могут замещаться на атомы металла при соблюдении правила стехиометрической валентности. Большинство кислотных гидроксидов находится в мета -форме, причем атомы водорода в формулах кислотных гидроксидов ставят на первое место, например H 2 SO 4 , HNO 3 и H 2 CO 3 , а не SO 2 (OH) 2 , NO 2 (OH) и CO(OH) 2 . Общая формула кислотных гидроксидов - Н х ЕО у , где электроотрицательную составляющую ЕО у х - называют кислотным остатком. Если не все атомы водорода замещены на металл, то они остаются в составе кислотного остатка.

Названия распространенных кислотных гидроксидов состоят из двух слов: собственного названия с окончанием "ая" и группового слова "кислота". Приведем формулы и собственные названия распространенных кислотных гидроксидов и их кислотных остатков (прочерк означает, что гидроксид не известен в свободном виде или в кислом водном растворе):

кислотный гидроксид

кислотный остаток

HAsO 2 - метамышьяковистая

AsO 2 - - метаарсенит

H 3 AsO 3 - ортомышьяковистая

AsO 3 3 - - ортоарсенит

H 3 AsO 4 - мышьяковая

AsO 4 3 - - арсенат

В 4 О 7 2 - - тетраборат

ВiО 3 - - висмутат

HBrO - бромноватистая

BrO - - гипобромит

HBrO 3 - бромноватая

BrO 3 - - бромат

H 2 CO 3 - угольная

CO 3 2 - - карбонат

HClO - хлорноватистая

ClO - - гипохлорит

HClO 2 - хлористая

ClO 2 - - хлорит

HClO 3 - хлорноватая

ClO 3 - - хлорат

HClO 4 - хлорная

ClO 4 - - перхлорат

H 2 CrO 4 - хромовая

CrO 4 2 - - хромат

НCrO 4 - - гидрохромат

H 2 Cr 2 О 7 - дихромовая

Cr 2 O 7 2 - - дихромат

FeO 4 2 - - феррат

HIO 3 - иодноватая

IO 3 - - иодат

HIO 4 - метаиодная

IO 4 - - метапериодат

H 5 IO 6 - ортоиодная

IO 6 5 - - ортопериодат

HMnO 4 - марганцовая

MnO 4 - - перманганат

MnO 4 2 - - манганат

MоO 4 2 - - молибдат

HNO 2 - азотистая

NO 2 - - нитрит

HNO 3 - азотная

NO 3 - - нитрат

HPO 3 - метафосфорная

PO 3 - - метафосфат

H 3 PO 4 - ортофосфорная

PO 4 3 - - ортофосфат

НPO 4 2 - - гидроортофосфат

Н 2 PO 4 - - дигидроотофосфат

H 4 P 2 O 7 - дифосфорная

P 2 O 7 4 - - дифосфат

ReO 4 - - перренат

SO 3 2 - - сульфит

HSO 3 - - гидросульфит

H 2 SO 4 - серная

SO 4 2 - - сульфат

НSO 4 - - гидросульфат

H 2 S 2 O 7 - дисерная

S 2 O 7 2 - - дисульфат

H 2 S 2 O 6 (O 2) - пероксодисерная

S 2 O 6 (O 2) 2 - - пероксодисульфат

H 2 SO 3 S - тиосерная

SO 3 S 2 - - тиосульфат

H 2 SeO 3 - селенистая

SeO 3 2 - - селенит

H 2 SeO 4 - селеновая

SeO 4 2 - - селенат

H 2 SiO 3 - метакремниевая

SiO 3 2 - - метасиликат

H 4 SiO 4 - ортокремниевая

SiO 4 4 - - ортосиликат

H 2 TeO 3 - теллуристая

TeO 3 2 - - теллурит

H 2 TeO 4 - метателлуровая

TeO 4 2 - - метателлурат

H 6 TeO 6 - ортотеллуровая

TeO 6 6 - - ортотеллурат

VO 3 - - метаванадат

VO 4 3 - - ортованадат

WO 4 3 - - вольфрамат

Менее распространенные кислотные гидроксиды называют по номенклатурным правилам для комплексных соединений, например:

Названия кислотных остатков используют при построении названий солей.

Основные гидроксиды содержат гидроксид-ионы, которые могут замещаться на кислотные остатки при соблюдении правила стехиометрической валентности. Все основные гидроксиды находятся в орто -форме; их общая формула М(ОН) n , где n = 1,2 (реже 3,4) и М n + - катион металла. Примеры формул и названий основных гидроксидов:

Важнейшим химическим свойством основных и кислотных гидроксидов является их взаимодействие их между собой с образованием солей (реакция солеобразования ), например:

Ca(OH) 2 + H 2 SO 4 = CaSO 4 + 2H 2 O

Ca(OH) 2 + 2H 2 SO 4 = Ca(HSO 4) 2 + 2H 2 O

2Ca(OH) 2 + H 2 SO 4 = Ca 2 SO 4 (OH) 2 + 2H 2 O

Соли - тип сложных веществ, в состав которых входят катионы М n + и кислотные остатки*.

Соли с общей формулой М х (ЕО у ) n называют средними солями, а соли с незамещенными атомами водорода, - кислыми солями. Иногда соли содержат в своем составе также гидроксид - или(и) оксид - ионы; такие соли называют основными солями. Приведем примеры и названия солей:

Ортофосфат кальция

Дигидроортофосфат кальция

Гидроортофосфат кальция

Карбонат меди(II)

Cu 2 CO 3 (OH) 2

Дигидроксид-карбонат димеди

Нитрат лантана(III)

Оксид-динитрат титана

Кислые и основные соли могут быть превращены в средние соли взаимодействием с соответствующим основным и кислотным гидроксидом, например:

Ca(HSO 4) 2 + Ca(OH) = CaSO 4 + 2H 2 O

Ca 2 SO 4 (OH) 2 + H 2 SO 4 = Ca 2 SO 4 + 2H 2 O

Встречаются также соли, содерхащие два разных катиона: их часто называют двойными солями , например:

2. Кислотные и оснόвные оксиды

Оксиды Е х О у - продукты полной дегидратации гидроксидов:

Кислотным гидроксидам (H 2 SO 4 , H 2 CO 3) отвечают кислотные оксиды (SO 3 , CO 2), а основным гидроксидам (NaOH, Ca(OH) 2) - основные оксиды (Na 2 O, CaO), причем степень окисления элемента Е не изменяется при переходе от гидроксида к оксиду. Пример формул и названий оксидов:

Кислотные и основные оксиды сохраняют солеобразующие свойства соответствующих гидроксидов при взаимодействии с противоположными по свойствам гидроксидами или между собой:

N 2 O 5 + 2NaOH = 2NaNO 3 + H 2 O

3CaO + 2H 3 PO 4 = Ca 3 (PO 4) 2 + 3H 2 O

La 2 O 3 + 3SO 3 = La 2 (SO 4) 3

3. Амфотерные оксиды и гидроксиды

Амфотерность гидроксидов и оксидов - химическое свойство, заключающееся в образовании ими двух рядов солей, например, для гидроксида и оксида алюминия:

(а) 2Al(OH) 3 + 3SO 3 = Al 2 (SO 4) 3 + 3H 2 O

Al 2 O 3 + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 O

(б) 2Al(OH) 3 + Na 2 O = 2NaAlO 2 + 3H 2 O

Al 2 O 3 + 2NaOH = 2NaAlO 2 + H 2 O

Так, гидроксид и оксид алюминия в реакциях (а) проявляют свойства основных гидроксидов и оксидов, т.е. реагируют с кислотными гидроксидам и оксидом, образуя соответствующую соль - сульфат алюминия Al 2 (SO 4) 3 , тогда как в реакциях (б) они же проявляют свойства кислотных гидроксидов и оксидов, т.е. реагируют с основными гидроксидом и оксидом, образуя соль - диоксоалюминат (III) натрия NaAlO 2 . В первом случае элемент алюминий проявляет свойство металла и входит в состав электроположительной составляющей (Al 3+), во втором - свойство неметалла и входит в состав электроотрицательной составляющей формулы соли (AlO 2 -).

Если указанные реакции протекают в водном растворе, то состав образующихся солей меняется, но присутствие алюминия в катионе и анионе остаётся:

2Al(OH) 3 + 3H 2 SO 4 = 2 (SO 4) 3

Al(OH) 3 + NaOH = Na

Здесь квадратными скобками выделены комплексные ионы 3+ - катион гексаакваалюминия(III), - - тетрагидроксоалюминат(III)-ион.

Элементы, проявляющие в соединениях металлические и неметаллические свойства, называют амфотерными, к ним относятся элементы А-групп Периодической системы - Be, Al, Ga, Ge, Sn, Pb, Sb, Bi, Po и др., а также большинство элементов Б-групп - Cr, Mn, Fe, Zn, Cd, Au и др. Амфотерные оксиды называют так же, как и основные, например:

Амфотерные гидроксиды (если степень окисления элемента превышает + II) могут находиться в орто - или (и) мета - форме. Приведем примеры амфотерных гидроксидов:

Амфотерным оксидам не всегда соответствуют амфотерные гидроксиды, поскольку при попытке получения последних образуются гидратированные оксиды, например:

Если амфотерному элементу в соединениях отвечает несколько степеней окисления, то амфотерность соответствующих оксидов и гидроксидов (а следовательно, и амфотерность самого элемента) будет выражена по-разному. Для низких степеней окисления у гидроксидов и оксидов наблюдается преобладание основных свойств, а у самого элемента - металлических свойств, поэтому он почти всегда входит в состав катионов. Для высоких степеней окисления, напротив, у гидроксидов и оксидов наблюдается преобладание кислотных свойств, а у самого элемента - неметаллических свойств, поэтому он почти всегда входит в состав анионов. Так, у оксида и гидроксида марганца(II) доминируют основные свойства, а сам марганец входит в состав катионов типа 2+ , тогда как у оксида и гидроксида марганца(VII) доминируют кислотные свойства, а сам марганец входит в состав аниона типа MnO 4 - . Амфотерным гидроксидам с большим преобладанием кислотных свойств приписывают формулы и названия по образцу кислотных гидроксидов, например НMn VII O 4 - марганцовая кислота.

Таким образом, деление элементов на металлы и неметаллы - условное; между элементами (Na, K, Ca, Ba и др.) с чисто металлическими и элементами (F, O, N, Cl, S, C и др.) с чисто неметаллическими свойствами существует большая группа элементов с амфотерными свойствами.

4. Бинарные соединения

Обширный тип неорганических сложных веществ - бинарные соединения. К ним относятся, в первую очередь все двухэлементные соединения (кроме основных, кислотных и амфотерных оксидов), например H 2 O, KBr, H 2 S, Cs 2 (S 2), N 2 O, NH 3 , HN 3 , CaC 2 , SiH 4 . Электроположительная и электроотрицательная составляющие формул этих соединений включают отдельные атомы или связанные группы атомов одного элемента.

Многоэлементные вещества, в формулах которых одна из составляющих содержит не связанные между собой атомы нескольких элементов, а также одноэлементные или многоэлементные группы атомов (кроме гидроксидов и солей), рассматривают как бинарные соединения, например CSO, IO 2 F 3 , SBrO 2 F, CrO(O 2) 2 , PSI 3 , (CaTi)O 3 , (FeCu)S 2 , Hg(CN) 2 , (PF 3) 2 O, VCl 2 (NH 2). Так, CSO можно представить как соединение CS 2 , в котором один атом серы заменен на атом кислорода.

Названия бинарных соединений строятся по обычным номенклатурным правилам, например:

OF 2 - дифторид кислорода

K 2 O 2 - пероксид калия

HgCl 2 - хлорид ртути(II)

Na 2 S - сульфид натрия

Hg 2 Cl 2 - дихлорид диртути

Mg 3 N 2 - нитрид магния

SBr 2 O - оксид-дибромид серы

NH 4 Br - бромид аммония

N 2 O - оксид диазота

Pb(N 3) 2 - азид свинца(II)

NO 2 - диоксид азота

CaC 2 - ацетиленид кальция

Для некоторых бинарных соединений используют специальные названия, список которых был приведен ранее.

Химические свойства бинарных соединений довольно разнообразны, поэтому их часто разделяют на группы по названию анионов, т.е. отдельно рассматривают галогениды, халькогениды, нитриды, карбиды, гидриды и т. д. Среди бинарных соединений встречаются и такие, которые имеют некоторые признаки других типов неорганических веществ. Так, соединения CO, NO, NO 2 , и (Fe II Fe 2 III)O 4 , названия которых строятся с применением слова оксид, к типу оксидов (кислотных, основных, амфотерных) отнесены быть не могут. Монооксид углерода СО, монооксид азота NO и диоксид азота NO 2 не имеют соответствующих кислотных гидроксидов (хотя эти оксиды образованы неметаллами С и N), не образуют они и солей, в состав анионов которых входили бы атомы С II , N II и N IV . Двойной оксид (Fe II Fe 2 III)O 4 - оксид дижелеза(III)-железа(II) хотя и содержит в составе электроположительной составляющей атомы амфотерного элемента - железа, но в двух разных степенях окисления, вследствие чего при взаимодействии с кислотными гидроксидами образует не одну, а две разные соли.

Такие бинарные соединения, как AgF, KBr, Na 2 S, Ba(HS) 2 , NaCN, NH 4 Cl, и Pb(N 3) 2 , построены, подобно солям, из реальных катионов и анионов, поэтому их называют солеобразными бинарными соединениями (или просто солями). Их можно рассматривать как продукты замещения атомов водорода в соединениях НF, НCl, НBr, Н 2 S, НCN и НN 3 . Последние в водном растворе обладают кислотной функцией, и поэтому их растворы называют кислотами, например НF(aqua) - фтороводородная кислота, Н 2 S(aqua) - сероводородная кислота. Однако они не принадлежат к типу кислотных гидроксидов, а их производные - к солям в рамках классификации неорганических веществ.

  • все металлы;
  • многие неметаллы (инертные газы, C , Si , B , Se , As , Te ).
Из молекул состоят:
  • практически все органические вещества;
  • небольшое число неорганических: простые и сложные газы (H 2 , O 2 , O 3 , N 2 , F 2 , Cl 2 , NH 3 , CO , CO 2 , SO 3 , SO 2 , N 2 O , NO , NO 2 , H 2 S ), а также H 2 O , Br 2 , I 2 и некоторые другие вещества.
Из ионов состоят:
  • все соли;
  • многие гидроксиды (основания и кислоты).

Состоят из атомов или молекул, – из молекул или ионов. Молекулы простых веществ состоят из одинаковых атомов, молекулы сложных веществ – из различных атомов.

Закон постоянства состава

Закон постоянства состава был открыт Ж. Прустом в 1801 году:

Всякое вещество, независимо от способа его получения, имеет постоянный качественный и количественный состав.

К примеру, оксид углерода СО 2 можно получить несколькими способами:

  • С + O 2 = t = CO 2
  • MgCO 3 +2HCl = MgCl 2 + H 2 O +CO 2
  • 2CO + O 2 = 2CO 2
  • CaCO 3 = t = CaO + CO 2

Однако, независимо от способа получения, молекула СО 2 всегда имеет один и тот же состав : 1 атом углерода и 2 атома кислорода.

Важно помнить:

  • Обратное утверждение, что определенному составу отвечает определенное соединение , неверно . К примеру, диметиловый эфир и этиловый спирт имеют одинаковый качественный и количественный состав, отраженный в простейшей формуле С 2 Н 6 О , однако они являются различными веществами, так как имеют различное строение. Их рациональные формулы в полуразвернутом виде будут разными:
  1. СН 3 – О – СН 3 (диметиловый эфир);
  2. СН 3 – СН 2 – ОН (этиловый спирт).
  • Закон постоянства состава строго применим лишь к соединениям с молекулярной структурой (дальтонидам ). Соединения с немолекулярной структурой (бертоллиды ) часто имеют переменный состав.

Химический состав сложных веществ и механических смесей

Сложное вещество (химическое соединение) – это вещество, состоящее из атомов различных химических веществ.

Основные признаки химического соединения:

  • Однородность;
  • Постоянство состава;
  • Постоянство физических и химических свойств;
  • Выделение или поглощение при образовании;
  • Невозможность разделения на составные части физическими методами.

В природе нет абсолютно чистых веществ. В любом веществе имеется хотя бы ничтожный процент примесей. Поэтому на практике всегда имеют дело с механическими смесями веществ. Однако, если содержание одного вещества в смеси значительно превосходит содержание всех остальных, то условно считается, что такое вещество является индивидуальным химическим соединением .

Допустимое содержание примесей в веществах, выпускаемых промышленностью, определяется стандартами и зависит от марки вещества.

Общепринята следующая маркировка веществ:

  • техн – технический (в своем составе может иметь до 20%; примесей);
  • ч – чистый;
  • чда – чистый для анализа;
  • хч – химически чистый;
  • осч – особой чистоты (допустимая норма примесей в составе – до 10 -6 % ).

Вещества, образующие механическую смесь, называются компонентами. При этом вещества, масса которых составляет большую часть от массы смеси, называют основными компонентами , а все остальные вещества, образующие смесь – примесями .

Отличия механической смеси от химического соединения:
  • Любую механическую смесь можно разделить на составные части физическими методами, основанными на различии плотностей , температур кипения и плавления , растворимости , намагничиваемости и других физических свойств компонентов, образующих смесь (например, смесь древесных и железных опилок можно разделить с помощью Н 2 О или магнита);
  • Непостоянство состава;
  • Непостоянство физических и химических свойств;
  • Неоднородность (хотя смеси газов и жидкостей могут быть однородны, к примеру – воздух).
  • При образовании механической смеси не происходит выделения и поглощения энергии.

Промежуточное положение между механическими смесями и химическими соединениями занимают растворы:

Как и для химических соединений, для растворов характерна:

  • однородность;
  • выделение или поглощение теплоты при образовании раствора.

Как и для механических смесей, для растворов характерна:

  • легкость разделения на исходные вещества физическими методами (например, выпариванием раствора поваренной соли, можно получить отдельно Н 2 О и NaCl );
  • непостоянство состава – их состав может меняться в широких пределах.

Химический состав по массе и по объему

Состав химических соединений, а также состав смесей различных веществ и растворов выражают в массовых долях (массовых %), а состав смесей жидкостей и газов, кроме того, в объемных долях (объемных %).

Состав сложного вещества, выраженный через массовые доли химических элементов, называется составом вещества по массе.

Например, состав Н 2 О по массе:

То есть, можно сказать, что химический состав воды (по массе): 11,11% водорода и 88,89% кислорода.

Массовая доля компонента в механической смеси (W) – это число, показывающую, какую часть смеси составляет масса компонента от общей массы смеси, принятой за единицу или 100%.

W 1 = m 1 /m (cм.) , m (см.) = m 1 + m 2 + …. mn,

Где m 1 – масса 1-го (произвольного)компонента, n – число компонентов смеси, m 1 m n – массы компонентов, образующих смесь, m (cм.) – масса смеси.

Например, массовая доля основного компонента :

W (осн. комп) = m (осн. комп) / m (см.)

Массовая доля примеси:

W (прим.) = m (прим) /m (см.)

Сумма массовых долей всех компонентов, образующих смесь равна 1 или 100% .

Объемная доля газа (или жидкости) в смеси газов (или жидкостей) – это число, показывающее, какую часть по объему составляет объем данного газа (или жидкости) от общего объема смеси, принятого за 1 или за 100% .

Состав смеси газов или жидкостей, выраженный в объемных долях, называется составом смеси по объему .

Например, состав смеси сухого воздуха :

  • По объему: W об ( N2) = 78,1% , W об (O2) = 20,9%
  • По массе: W (N2) = 75,5% , W ( O2) = 23,1%

Этот пример наглядно демонстрирует, что во избежание путаницы, корректно будет всегда указывать, по массе или по объему указано содержание компонента смеси, ведь эти цифры всегда отличаются: по массе в воздушной смеси кислорода получается 23,1 % , а по объему – всего 20,9%.

Растворы можно рассматривать как смеси из растворенного вещества и растворителя. Поэтому их химический состав, как и состав любой смеси, можно выражать в массовых долях компонентов:

W (раств. в-ва) = m (раств. в-ва) /m (р-ра) ,

где

m (р-ра) = m (раств. в-ва) + m (растворителя)

или

m (р-ра) = p (р-ра)· V (р-ра)

Состав раствора , выраженный через массовую долю растворенного вещества (в % ), называется процентной концентрацией этого раствора.

Состав растворов жидкостей в жидкостях (например, спирта в воде, ацетона в воде) удобнее выражать в объемных долях:

W об % (раств. ж) = V (раств.ж) · V (р-ра) ·100% ;

где

V (р-ра) = m (р-ра) /p (р-ра)

или приближенно

V (р-ра) ≈ V (H2O) + V (раств. ж)

Например, содержание спирта в винно-водочных изделиях указывают не в массовых, а в объемных долях (% ) и называют эту цифру крепостью напитка.

Состав растворов твердых веществ в жидкостях или газов в жидкостях в объемных долях не выражают.

Химическая формула, как отображение химического состава

Качественный и количественный состав вещества отображают с помощью химической формулы . К примеру, карбонат кальция имеет химическую формулу «CaCO 3 » . Из этой записи можно почерпнуть следующую информацию:

  • Количество молекул 1 .
  • Количество вещества 1 моль .
  • Качественный состав (какие химические элементы образуют вещество) – кальций, углерод, кислород.
  • Количественный состав вещества:
  1. Число атомов каждого элемента в одной молекуле вещества: молекула карбоната кальция состоит из 1 атома кальция , 1 атома углерода и 3 атомов кислорода .
  2. Число молей каждого элемента в 1 моле вещества: В 1 моль СаСО 3 (6,02 ·10 23 молекулах) содержится 1 моль (6,02 ·10 23 атомов) кальция , 1 моль (6,02 ·10 23 атомов) углерода и 3 моль (3·6,02·10 23 атомов) химического элемента кислорода )
  • Массовый состав вещества:
  1. Масса каждого элемента в 1 моле вещества: 1 моль карбоната кальция (100г) содержит химических элементов: 40г кальция , 12г углерода , 48г кислорода .
  2. Массовые доли химических элементов в веществе (состав вещества в процентах по массе):

W (Ca) = (n (Ca) ·Ar (Ca))/Mr (CaCO3) = (1·40)/100= 0,4 (40%)

W (C) = (n (Ca) ·Ar (Ca))/Mr (CaCO3) = (1·12)/100= 0,12 (12%)

W (О) = (n (Ca) ·Ar (Ca))/Mr (CaCO3) = (3·16)/100= 0,48 (48%)

  • Для вещества с ионной структурой (соли, кислоты, основания) – формула вещества дает информацию о числе ионов каждого вида в молекуле, их количестве и массе ионов в 1 моль вещества :
  1. Молекула СаСО 3 состоит из иона Са 2+ и иона СО 3 2-
  2. 1 моль (6,02·10 23 молекул) СаСО 3 содержит 1 моль ионов Са 2+ и 1 моль ионов СО 3 2- ;
  3. 1 моль (100г) карбоната кальция содержит 40г ионов Са 2+ и 60г ионов СО 3 2- ;

Список литературы:

Для химического соединения характерны следующие отличительные особенности:

1) Кристаллическая решетка отличается от решеток компонентов, образующих соединение.

2) В соединении всегда сохраняется простое кратное соотношение его компонентов. Это позволяет выразить их состав простой формулой A m B n , где А и В – соответствующие элементы, n и m – простые числа.

3) Свойства соединения резко отличаются от свойств образующих его компонентов.


4) Температура плавления (диссоциации) постоянная.

5) Образование химического соединения сопровождается значительным тепловым эффектом.

Химические соединения образуются между компонентами, имеющими большое различие в электронном строении атомов и кристаллических решеток.

В качестве примера типичных химических соединений можно назвать такие, как соединения магния с элементами IV-VI групп периодической системы: Mg 2 Sn, Mg 2 Pb, Mg 2 P, Mg 3 Sb, MgS и другие.

Соединения одних металлов с другими носят общее название интерметаллических соединений, или интерметаллидов.

Соединения металла с неметаллом (нитриды, оксиды, карбиды и др.) могут иметь как металлическую, так и ионную связь. Соединения, имеющие металлическую связь, называют металлическими соединениями.

Большое число химических соединений, образующихся в металлических сплавах, отличается от типичных химических соединений, так как не подчиняется законам валентности и не имеет постоянного состава. Рассмотрим наиболее важные химические соединения, образующиеся в сплавах.

7.2.1.Фазы внедрения . Переходные металлы (Fe, Mn, Cr, Mo и др.) образуют с углеродом, азотом, бором и водородом, т.е. с элементами, имеющими малый атомный радиус, соединения: карбиды, нитриды, бориды и гидриды. Они имеют общность строения и свойств и часто называются фазами внедрения.

Фазы внедрения имеют формулу М 4 Х (Fe 4 N, Mn 4 N и др.), M 2 X (W 2 C, Fe 2 N и др.), MX (WC, TiC,TiN и др.).

Кристаллическая структура фаз внедрения определяется соотношением атомных радиусов неметалла (R x) и металла (R M). Если R x / R M <59, то атомы в этих фазах расположены по типу одной из кристаллических решеток: кубической или гексагональной, в которую внедряются атомы неметалла, занимая в ней определенные поры.

Фазы внедрения являются фазами переменного состава. Карбиды и Нитриды обладают высокой твердостью. Кристаллическая решетка фаз внедрения отличается от решетки металла.

7.2.2. Электронные соединения (фазы Юм-Розери). Эти соединения чаще образуются между одновалентными (Cu, Ag, Au, Li, Na) металлами или металлами переходных групп (Fe, Mn, Co и др.), с одной стороны, и с простыми металлами с валентностью от 2 до 5 (Be,


Mg, Zn, Cd, Al и др.), с другой стороны. Соединения этого типа имеют определенное соотношение числа валентных электронов к числу атомов, т.е. определенную электронную концентрацию. Эти соотношения, как показал английский металлофизик Юм-Розери, могут быть 3/2, 21/13 и 7/4, причем каждому соотношению соответствует определенная кристаллическая решетка: объемно центрированная кубическая или гексагональная решетка, сложная кубическая решетка и гранецентрированная кубическая решетка, соответственно.

7.2.3.Фазы Лавеса . Эти фазы имеют формулу АВ 2 и образуются между элементами, атомные диаметры которых находятся примерно в соотношении 1: 1,2. Например, MgZn 2 , TiCr 2 и др. Фазы Лавеса встречаются как упрочняющие интерметаллиды в жаропрочных сплавах.

Твердые растворы

Твердыми растворами называют фазы, в которых один из компонентов сплава сохраняет свою кристаллическую решетку, а атомы других (или другого) компонентов располагаются в решетке первого компонента (растворителя), изменяя ее размеры. Таким образом, твердый раствор, состоящий из нескольких компонентов, имеет один тип решетки и представляет собой одну фазу. Кроме того, твердый раствор существует не при определенном соотношении компонентов (как в химическом соединении), а в интервале концентраций.

Различают твердые растворы .

При образовании твердых растворов замещения атомы растворенного компонента замещают часть атомов растворителя в его кристаллической решетке (рис.26, б ).

При образовании твердого раствора внедрения (рис.26, в ) атомы растворенного компонента располагаются в межузлиях (пустотах) кристаллической решетки растворителя.

Рис.26. Кристаллическая решетка ОЦК: а - чистый металл, б - твердый раствор замещения, в - твердый раствор внедрения; А - атомы основного металла, В – атомы замещения, С – атомы внедрения.


Металлы могут в той или иной степени взаимно растворяться друг в друге в твердом состоянии, образуя твердые растворы замещения с ограниченной или неограниченной растворимостью. Твердые растворы с неограниченной растворимостью образуются при следующих условиях:

1) Компоненты должны обладать одинаковыми по типу (изоморфными) кристаллическими решетками.

2) Различие в атомных размерах компонентов должно быть незначительным и не превышать 10-15%.

3) Компоненты должны принадлежать к одной и той же (или родственной) группе периодической системы элементов.

В некоторых сплавах (например, Cu-Au, Fe-Al), образующих при высоких температурах растворы замещения (с неупорядоченным чередованием атомов компонентов), при медленном охлаждении или длительном нагреве при определенных температурах протекает процесс перераспределения атомов. Твердые растворы, устойчивые при сравнительно низких температурах, получили название упорядоченных твердых растворов, или сверхструктур . Упорядоченные твердые растворы можно рассматривать как промежуточные фазы между твердыми растворами и химическими соединениями. В отличие от химических соединений кристаллическая решетка упорядоченных твердых растворов представляет собой решетку растворителя. Образование упорядоченных твердых растворов сопровождается изменением физических и механических свойств. Прочность обычно возрастает, а пластичность падает.

Способность к образованию твердых растворов присуща не только чистым элементам, но и химическим соединениям. В этих случаях сохраняется кристаллическая решетка химического соединения, но избыточное количество атомов одного из компонентов может заменять какое-то количество атомов другого компонента. Кроме того, при этом в отдельных узлах могут появляться незанятые места – пустоты. Твердые растворы на базе химических соединений, образование которых сопровождается появлением пустых мест в узлах решетки, называются растворами вычитания.

РЕЗЮМЕ

Под сплавом подразумевают вещество, полученное сплавлением двух или более элементов.


Совокупность фаз, находящихся в состоянии равновесия, называют системой . Фазой называют однородные составные части системы, имеющие одинаковый состав, кристаллическое строение и свойства, одно и то же агрегатное состояние и отделенные от составных частей поверхности раздела. Под структурой понимают форму, размеры и характер взаимного расположения фаз в металлах и сплавах. Компоненты в сплаве могут образовывать механические смеси, химические соединения или твердые растворы.

Механическая смесь двух компонентов образуется тогда, когда они не способны к взаимному растворению в твердом состоянии и не вступают в химическую реакцию с образованием соединения.

Химические соединения образуются между компонентами, имеющими большое различие в электронном строении атомов и кристаллических решеток. Строение и свойства химического соединения отличаются от строения и свойств создавших его компонентов.

Наиболее важные химические соединения, образующиеся в сплавах:

Фазы внедрения

Электронные соединения (фазы Юм-Розери)

Фазы Лавеса

Твердыми растворами называют фазы, в которых один из компонентов сплава сохраняет свою кристаллическую решетку, а атомы других (или другого) компонентов располагаются в решетке первого компонента (растворителя), изменяя ее размеры.

Различают твердые растворы замещения, внедрения и вычитания .

Вопросы для повторения

1. Что такое сплав?

2. Дать определение терминам «фаза», «система», «структура».

3. Когда в сплаве образуется механическая смесь компонентов, а когда - химическое соединение?

4. Что такое твердые растворы? Какие виды твердых растворов Вы знаете?

8. ДИАГРАММЫ СОСТОЯНИЯ

Диаграмма состояния представляет собой графическое изображение состояния сплава. Диаграммы состояния строят для условий равновесия или условий, достаточно близких к ним. Поэтому диаграмма состояния может также называться диаграммой равновесия.

Равновесное состояние соответствует минимальному значению свободной энергии. Этого состояния можно достичь при отсутствии перегрева или переохлаждения сплава. Диаграмма состояния представляет собой теоретический случай, т.к. равновесные превращения (без переохлаждения или перегрева) на практике не могут совершать-


ся. Обычно на практике используются превращения, происходящие при малых скоростях нагрева или охлаждения.

Общие закономерности сосуществования устойчивых фаз могут быть выражены в математической форме в виде правила фаз или закона Гиббса.

Правило фаз дает количественную зависимость между степенью свободы системы и количеством фаз компонентов.

Под числом степеней свободы (вариантностью) системы понимают число внешних и внутренних факторов (температура, давление, концентрация), которое можно изменять без изменения числа фаз в системе.

Правило фаз .

С= k - f + 2

С - число степеней свободы, k - число компонентов, f – число фаз, 2 – число внешних факторов.

Правило фаз справедливо только для равновесного состояния.

Независимыми переменными в уравнении правила фаз являются концентрация, температура и давление. Если принять, что все превращения в металле происходят при постоянном давлении, то число переменных уменьшится на единицу.

С= k - f + 1

Пример. Посмотрим, как изменяется степень свободы однокомпонентной системы (k=1 ) для случая кристаллизации чистого металла. Когда металл находится в жидком состоянии, т.е. f =1 (одна фаза - жидкость), число степеней свободы равно 1. Температура в данном случае может изменяться, не изменяя агрегатного состояния. В момент кристаллизации f =2 (две фазы – твердая и жидкая), С=0 . Это значит, что две фазы находятся в равновесии при строго определенной температуре (температура плавления), и она не может быть изменена до тех пор, пока одна фаза не исчезнет, т.е. система не станет моновариантной (C=1 ).

Химические соединения и родственные им по природе фазы в металлических сплавах многообразны. Характерные особенности химических соединений:

1. Кристаллическая решетка отличается от решеток компонентов, образующих соединение. Атомы располагаются упорядоченно. Химические соединения имеют сплошную кристаллическую решетку (рис. 7).

2. В соединении всегда сохраняется простое кратное соотношение компонентов, что позволяет их выразить формулой: А n B m, А и В-компоненты; n и m - простые числа.

3. Свойства соединения редко отличаются от свойств образующих его компонентов. Cu - НВ35; Al - НВ20; CuAl 2 - НВ400.

4. Температура плавления (диссоциации) постоянная.

5. Образование химического соединения сопровождается значительным тепловым эффектом.

Химические соединения образуются между компонентами, имеющими большое различие в электронном строении атомов и кристаллических решеток.

Рисунок 7. Кристаллические решетки: а, б - соединение NaCl, в-соединение Cu2MnSn (ячейка состоит из 8 атомов меди, 4 атомов марганца и 4 атомов олова)

Примером типичных химических соединений с нормальной валентностью могут служить соединения Mg с элементами IV-VІ групп Периодической системы: Mg 2 Sn, Mg 2 Pb, Mg 2 P 2 , Mg 2 Sb 2 , Mg 3 Bі 2 , MgS и др. Соединения одних металлов с другими носят название интерметаллидов. Химическая связь в интерметаллидах чаще металлическая.

Большое число химических соединений, образующихся в металлических сплавах, отличается по некоторым особенностям от типичных химических соединений, так как не подчиняется законам валентности и не имеет постоянного состава. Рассмотрим наиболее важные химические соединения, образующиеся в сплавах.

Фазы внедрения

Переходные металлы (Fe, Mn, Cr, Mo, Ti, V, W и др.) образуют с неметаллами С, N, Н соединения: карбиды (с С ), нитриды (с N ), бориды (с В ), гидриды (с Н ). Часто их называют фазами внедрения.

Фазы внедрения имеют формулу:

М 4 Х (Fe 4 N, Mn 4 N и др.),

М 2 Х (W 2 C, Mo 2 C, Fe 2 N, Cr 2 N и др.),

МХ (WC, TiC, VC, NbC, TiN, VN и др.).

Кристаллическая структура фаз внедрения определяется соотношением атомных радиусов неметалла (Rх) и металла (Rм).

Если Rх/Rм < 0,59, то атомы металла в этих фазах расположены по типу одной из простых кристаллических решеток: кубической (К8, К12) и гексагональной (Г12), в которую внедряются атомы неметалла, занимая в ней определенные поры.

Фазы внедрения являются фазами переменного состава, а соответствующие им формулы (химические) обычно характеризуют максимальное содержание в них металлов.

Фазы внедрения обладают высокой: электропроводностью, температурой плавления и высокой твёрдостью.

Фазы внедрения имеют кристаллическую решетку, отличную от решетки металла растворителя.

На базе фаз внедрения легко образуются твердые растворы вычитания (VC, TiC, ZrC, NbC), часть атомов в узлах решетки отсутствует.

Электронные соединения.

Эти соединения образуют между одновалентными (Cu, Ag, Au, Li, Na) металлами или металлами переходных групп (Mn, Fe, Co и др.), с одной стороны, и с простыми металлами с валентностью от 2 до 5 (Be, Mg, Zn, Cd, Al и др.) с другой стороны.

Соединения этого типа (определил английский металлофизик Юм - Розери), характеризуются определенным отношением валентных электронов к числу атомов: 3/2; 21/13; 7/4; каждому соотношению соответствует определенная кристаллическая решетка.

При отношении 3/2 образуется ОЦК решетка (обозначается? - фаза) (CuBe, CuZn, Cu 3 Al, Cu 5 Sn, CoAl, FeAl).

При 21/13 имеют сложную кубическую решетку (52 атома на ячейку) - ? - фаза (Cu 5 Zn 8 , Cu 31 Sn 8 , Cu 9 Al 4 , Cu 31 Si 8).

При 7/4 имеется плотноупакованная гексагональная решетка, обозначается? - фазой (CuZn 3 , CuCd 3 , Cu 3 Si, Cu 3 Sn, Au 3 Sn, Cu 5 Al 3).

Электронные соединения встречаются во многих технических сплавах - Cu и Zn, Cu и Sn (олово), Fe и Al, Cu и Si и т.п. Обычно в системе наблюдается все три фазы (?, ?, ?).

У электронных соединений определенное соотношение атомов, кристаллическая решетка отличается от решеток компонентов - это признаки хим. соединений. Однако в соединениях нет упорядоченного расположения атомов. С понижением температуры (после нагрева) происходит частичное упорядочение, но не полное. Электронные соединения образуют с компонентами, из которых состоят твердые растворы в широком интервале концентраций.

Таким образом, этот вид соединений следует считать промежуточными между химическими соединениями и твердыми растворами.

Таблица №1 - Электронные соединения

Фазы Лавеса

Имеют формулу АВ 2 , образуются при соотношении атомных диаметров компонентов Д А В = 1,2 (чаще 1,1-1,6). Фазы Лавеса имеют ГПУ гексагональную решетку (MgZn 2 и MgNi 2, BaMg 2 , MoBe 2 , TiMn 2) или ГЦК (MgCu 2 , AgBe 2 , Ca Al 2 , TiBe 2 , TiCr 2). Данные фазы встречаются как упрочняющие интерметаллидные фазы в жаропрочных сплавах.

Химия - удивительная и, признаться, запутанная наука. Почему-то ассоциируется она с яркими экспериментами, разноцветными пробирками, густыми облаками пара. Но мало кто задумывается о том, откуда же берётся это «волшебство». На самом деле ни одна реакция не проходит без образования соединений между атомами реагентов. Более того, эти «перемычки» иногда встречаются и в простых элементах. Они влияют на способность веществ вступать в реакции и объясняют некоторые их физические свойства.

Какие же бывают виды химических связей и как они влияют на соединения?

Теория

Начинать надо с самого простого. Химическая связь - это взаимодействие, при котором атомы веществ соединяются и образуют более сложные вещества. Ошибочно полагать, что это свойственно только соединениям вроде солей, кислот и оснований - даже простые вещества, молекулы которых состоят из двух атомов, имеют эти «перемычки», если так можно условно назвать связь. Кстати, важно запомнить, что объединиться могут только атомы, имеющие разные заряды (это основы физики: одинаково заряженные частицы отталкиваются, а противоположные -- притягиваются), так что в сложных веществах всегда найдётся катион (ион с положительным зарядом) и анион (отрицательная частица), а само соединение всегда будет нейтральным.

Теперь попробуем разобраться в том, как происходит образование химической связи.

Механизм образования

У любого вещества есть определённое количество электронов, распределённых по энергетическим слоям. Самым уязвимым считается внешний слой, на котором обычно находится самое малое количество этих частиц. Узнать их число можно, посмотрев на номер группы (строка с цифрами от одного до восьми в верхней части таблицы Менделеева), в которой находится химический элемент, а количество энергетических слоёв равно номеру периода (от одного до семи, вертикальная строка слева от элементов).

В идеале на внешнем энергетическом слое находятся восемь электронов. Если же их не хватает, атом старается перетянуть их у другой частицы. Именно в процессе отбора необходимых для завершения внешнего энергетического слоя электронов образуются химические связи веществ. Их число может варьироваться и зависит от количества валентных, или неспаренных, частиц (чтобы узнать, сколько их в атоме, нужно составить его электронную формулу). Число электронов, не имеющих пару, будет равно количеству образовавшихся связей.

Чуть подробнее о типах

Виды химических связей, образующихся при реакциях или же просто в молекуле какого-то вещества, целиком и полностью зависят от самого элемента. Различают три типа «перемычек» между атомами: ионный, металлический и ковалентный. Последний, в свою очередь, делится на полярный и неполярный.

Для того чтобы понять, какой связью связаны атомы, используют своеобразное правило: если элементы находятся в правой и левой частях таблицы (то есть являются металлом и неметаллом, например NaCl), то их соединение - отличный пример ионной связи. Два неметалла образуют ковалентную полярную связь (HCl), а два атома одного вещества, соединяясь в одну молекулу, - ковалентную неполярную (Cl 2 , O 2). Вышеназванные типы химических связей не подходят для веществ, состоящих из металлов, - там встречается исключительно металлическая связь.

Ковалентное взаимодействие

Как уже упоминалось ранее, виды химических связей имеют определённое влияние на вещества. Так, например, ковалентная «перемычка» очень нестойкая, из-за чего соединения с ней легко разрушаются при малейшем внешнем воздействии, нагревании например. Правда, касается это только молекулярных веществ. Те же, что имеют немолекулярное строение, практически неразрушимы (идеальный пример - кристалл алмаза - соединение атомов углерода).

Вернёмся к полярной и неполярной ковалентной связи. С неполярной всё просто - электроны, между которыми образуется «перемычка», находятся на равном расстоянии от атомов. Но во втором случае они смещаются к одному из элементов. Победителем в «перетягивании» окажется то вещество, электроотрицательность (способность привлекать электроны) которого выше. Определяется она по специальным таблицам, и чем больше разница этой величины у двух элементов, тем более полярной будет связь между ними. Правда единственное, для чего может пригодиться знание электроотрицательности элементов, - определение катиона (положительный заряд - вещество, у которого эта величина будет меньше) и аниона (отрицательная частица с лучшей способностью к привлечению электронов).

Ионная связь

Для соединения металла и неметалла подходят далеко не все типы химических связей. Как уже говорилось выше, если разница в электроотрицательности элементов огромна (а именно так бывает, когда они расположены в противоположных частях таблицы), между ними образуется ионная связь. В этом случае валентные электроны переходят от атома с меньшей электроотрицательностью к атому с большей, образуя анион и катион. Самым ярким примером подобной связи является соединение галогена и металла, например AlCl 2 или HF.

Металлическая связь

С металлами всё ещё проще. Им чужды вышеперечисленные виды химических связей, потому что у них есть собственная. Соединять она может как атомы одного вещества (Li 2), так и разных (AlCr 2), в последнем случае образуются сплавы. Если говорить о физических свойствах, то металлы совмещают в себе пластичность и прочность, то есть они не разрушаются при малейшем воздействии, а просто изменяют форму.

Межмолекулярная связь

Кстати, химические связи в молекулах тоже существуют. Они так и называются - межмолекулярными. Самый распространённый тип - водородная связь, при которой атом водорода заимствует электроны у элемента с высокой электроотрицательностью (у молекулы воды, например).