Формулы тригонометрии 10. Тригонометрические уравнения — формулы, решения, примеры

Вы можете заказать подробное решение вашей задачи !!!

Формулы двойного угла дают возможность выразить тригонометрические функции (синус, косинус, тангенс, котангенс) угла ` 2\alpha` через эти самые функции угла `\alpha`.

Записанный ниже список — это основные формулы двойного угла, которые наиболее часто используются в тригонометрии. Для косинуса их есть три, они все равносильны и одинаково важны.

`sin \ 2\alpha=` `2 \ sin \ \alpha \ cos \ \alpha`
`cos \ 2\alpha=cos^2 \alpha-sin^2 \alpha`, ` cos \ 2\alpha=1-2 \ sin^2 \alpha`, `cos \ 2\alpha=2 \ cos^2 \alpha-1`
`tg \ 2\alpha=\frac{2 \ tg \ \alpha}{1-tg^2 \alpha}`
`ctg \ 2\alpha=\frac{ctg^2 \alpha-1}{2 \ ctg \ \alpha}`

Следующие тождества выражают все тригонометрические функции угла ` 2\alpha` через функции тангенс и котангенс угла `\alpha`.

`sin \ 2\alpha=` `\frac {2 \ tg \ \alpha}{1+tg^2 \alpha}=\frac {2 \ ctg \ \alpha}{1+ctg^2 \alpha}=` `\frac 2{tg \ \alpha+ctg \ \alpha}`
`cos \ 2\alpha=` `\frac{1-tg^2\alpha}{1+tg^2\alpha}=\frac{ctg^2\alpha-1}{ctg^2\alpha+1}=` `\frac{ctg \ \alpha-tg \ \alpha}{ctg \ \alpha+tg \ \alpha}`
`tg \ 2\alpha=` `\frac{2 \ ctg \ \alpha}{ctg^2 \alpha-1}=` `\frac 2{ \ ctg \ \alpha-tg \ \alpha}`
`ctg \ 2\alpha=\frac { \ ctg \ \alpha-tg \ \alpha}2`

Формулы для косинуса и синуса двойного угла выполняются для любого угла `\alpha`. Формулы для тангенса двойного угла справедливы для тех `\alpha`, при которых определен `tg \ 2\alpha`, то есть при ` \alpha\ne\frac\pi4+\frac\pi2 n, \ n \in Z`. Аналогично, для котангенса они имеют место для тех `\alpha`, при которых определен `ctg \ 2\alpha`, то есть при ` \alpha\ne\frac\pi2 n, \ n \in Z`.

Доказательство формул двойного угла

Все формулы двойного угла выводятся из формул сумы и разности углов тригонометрических функций.

Возьмем две формулы, для сумы углов синуса и косинуса:

`sin(\alpha+\beta)=` `sin \ \alpha\ cos \ \beta+cos \ \alpha\ sin \ \beta` и `cos(\alpha+\beta)=` `cos \ \alpha\ cos \ \beta-sin \ \alpha\ sin \ \beta`. Возьмем `\beta=\alpha`, тогда `sin(\alpha+\alpha)=` `sin \ \alpha\ cos \ \alpha+cos \ \alpha\ sin \ \alpha=2 \ sin \ \alpha \ cos \ \alpha`, аналогично `cos(\alpha+\alpha)=` `cos \ \alpha\ cos \ \alpha-sin \ \alpha\ sin \ \alpha=cos^2 \alpha-sin^2 \alpha`, что и доказывает формулы двойного угла для синуса и косинуса.

Два другие равенства для косинуса ` cos \ 2\alpha=1-2 \ sin^2 \alpha` и `cos \ 2\alpha=2 \ cos^2 \alpha-1` сводятся к уже доказанному, если в них заменить 1 на `sin^2 \alpha+cos^2 \alpha=1`. Так `1-2 \ sin^2 \alpha=` `sin^2 \alpha+cos^2 \alpha-2 \ sin^2 \alpha=` `cos^2 \alpha-sin^2 \alpha` и `2 \ cos^2 \alpha-1=` `2 \ cos^2 \alpha-(sin^2 \alpha+cos^2 \alpha)=` `cos^2 \alpha-sin^2 \alpha`.

Чтобы доказать формулы тангенса двойного угла и котангенса, воспользуемся определением этих функций. Запишем `tg \ 2\alpha` и `ctg \ 2\alpha` в виде `tg \ 2\alpha=\frac {sin \ 2\alpha}{cos \ 2\alpha}` и `ctg \ 2\alpha=\frac {cos \ 2\alpha}{sin \ 2\alpha}`. Применив уже доказанные формулы двойного угла для синуса и косинуса, получим `tg \ 2\alpha=\frac {sin \ 2\alpha}{cos \ 2\alpha}=\frac {2 \ sin \ \alpha \ cos \ \alpha}{cos^2 \alpha-sin^2 \alpha}` и `ctg \ 2\alpha=\frac {cos \ 2\alpha}{sin \ 2\alpha}=` `\frac {cos^2 \alpha-sin^2 \alpha}{2 \ sin \ \alpha \ cos \ \alpha}`.

В случае с тангенсом разделим числитель и знаменатель конечной дроби на `cos^2 \alpha`, для котангенса в свою очередь — на `sin^2 \alpha`.

`tg \ 2\alpha=\frac {sin \ 2\alpha}{cos \ 2\alpha}=\frac {2 \ sin \ \alpha \ cos \ \alpha}{cos^2 \alpha-sin^2 \alpha}=` `\frac {\frac{2 \ sin \ \alpha \ cos \ \alpha}{cos^2 \alpha}}{\frac{cos^2 \alpha-sin^2 \alpha}{cos^2 \alpha}}=` `\frac {2 \cdot \frac{ sin \alpha }{cos \alpha}}{1-\frac{sin^2 \alpha}{cos^2 \alpha}}=\frac{2 \ tg \ \alpha}{1-tg^2 \alpha}`.

`ctg \ 2\alpha=\frac {cos \ 2\alpha}{sin \ 2\alpha}=` `\frac {cos^2 \alpha-sin^2 \alpha}{2 \ sin \ \alpha \ cos \ \alpha}=` `\frac {\frac{cos^2 \alpha-sin^2 \alpha}{sin^2 \alpha}}{\frac{2 \ sin \ \alpha \ cos \ \alpha}{sin^2 \alpha}}=` `\frac {\frac{cos^2 \alpha}{sin^2 \alpha}-1}{2 \cdot \frac{cos \alpha}{ sin \alpha }}=\frac{ctg^2 \alpha-1}{2 \ ctg \ \alpha}`.

Предлагаем еще посмотреть видео, чтобы лучше закрепить теоретический материал:

Примеры использования формул при решении задач

Формулы двойного угла в большинстве случаев используются для преобразование тригонометрических выражений. Рассмотрим некоторые из случаем, как можно на практике применять их при решений конкретных задач.

Пример 1. Проверить справедливость тождеств двойного угла для `\alpha=30^\circ`.

Решение. В наших формулах используется два угла `\alpha` и `2\alpha`. Значение первого угла задано в условии, второго соответственно будет `2\alpha=60^\circ`. Также нам известны числовые значения для всех тригонометрических функций этих углов. Запишем их:

`sin 30^\circ=\frac 1 2`, `cos 30^\circ=\frac {\sqrt 3}2`, `tg 30^\circ=\frac {\sqrt 3}3`, `ctg 30^\circ=\sqrt 3` и

`sin 60^\circ=\frac {\sqrt 3}2`, `cos 60^\circ=\frac 1 2`, `tg 60^\circ=\sqrt 3`, `ctg 60^\circ=\frac {\sqrt 3}3`.

Тогда будем иметь

`sin 60^\circ=2 sin 30^\circ cos 30^\circ=` `2 \cdot \frac 1 2 \cdot \frac {\sqrt 3}2=\frac {\sqrt 3}2`,

`cos 60^\circ=cos^2 30^\circ-sin^2 30^\circ=` `(\frac {\sqrt 3}2)^2 \cdot (\frac 1 2)^2=\frac 1 2`,

`tg 60^\circ=\frac{2 tg 30^\circ}{1-tg^2 30^\circ}=` `\frac{2 \cdot \frac {\sqrt 3}3}{1-(\frac {\sqrt 3}3)^2}=\sqrt 3`,

`ctg 60^\circ=\frac{ctg^2 30^\circ-1}{2 \ ctg 30^\circ}=` `\frac{(\sqrt 3)^2-1}{2 \cdot \sqrt 3}=\frac {\sqrt 3}3`.

Что и доказывает справедливость равенств для заданного в условии угла.

Пример 2. Выразить `sin \frac {2\alpha}3` через тригонометрические функции угла `\frac {\alpha}6`.

Решение. Запишем угол синуса следующим образом ` \frac {2\alpha}3=4 \cdot \frac {\alpha}6`. Тогда, применив два раза формулы двойного угла, мы сможем решить нашу задачу.

Вначале воспользуемся равенством синуса двойного угла: ` sin\frac {2\alpha}3=2 \cdot sin\frac {\alpha}3 \cdot cos\frac {\alpha}3 `, теперь снова применим наши формулы для синуса и косинуса соответственно. В результате получим:

` sin\frac {2\alpha}3=2 \cdot sin\frac {\alpha}3 \cdot cos\frac {\alpha}3=` `2 \cdot (2 \cdot sin\frac {\alpha}6 \cdot cos\frac {\alpha}6) \cdot (cos^2\frac {\alpha}6-sin^2\frac {\alpha}6)=` `4 \cdot sin\frac {\alpha}6 \cdot cos^3 \frac {\alpha}6-4 \cdot sin^3\frac {\alpha}6 \cdot cos \frac {\alpha}6`.

Ответ. ` sin\frac {2\alpha}3=` `4 \cdot sin\frac {\alpha}6 \cdot cos^3 \frac {\alpha}6-4 \cdot sin^3\frac {\alpha}6 \cdot cos \frac {\alpha}6`.

Формулы тройного угла

Эти формулы, аналогично к предыдущим, дают возможность выразить функции угла ` 3\alpha` через эти самые функции угла `\alpha`.

`sin \ 3\alpha=3 \ sin \ \alpha-4sin^3 \alpha`
`cos \ 3\alpha=4cos^3 \alpha-3 \ cos \ \alpha`
`tg \ 3\alpha=\frac{3 \ tg \ \alpha-tg^3 \alpha}{1-3 \ tg^2 \alpha}`
`ctg \ 3\alpha=\frac{ctg^3 \alpha-3 \ ctg \ \alpha}{3 \ ctg^2 \alpha-1}`

Доказать их можно, используя равенства сумы и разности углов, а также хорошо известные нам формулы двойного угла.

`sin \ 3\alpha= sin (2\alpha+ \alpha)=` `sin 2\alpha cos \alpha+cos 2\alpha sin \alpha=` `2 sin \alpha cos \alpha cos \alpha+(cos^2 \alpha-sin^2 \alpha) sin \alpha=` `3 sin \alpha cos^2 \alpha-sin^3 \alpha`.

Заменим в полученной формуле `sin \ 3\alpha=3 sin \alpha cos^2 \alpha-sin^3 \alpha` `cos^2\alpha` на `1-sin^2\alpha` и получим `sin \ 3\alpha=3 \ sin \ \alpha-4sin^3 \alpha`.

Также и для косинуса тройного угла:

`cos \ 3\alpha= cos (2\alpha+ \alpha)=` `cos 2\alpha cos \alpha-sin 2\alpha sin \alpha=` `(cos^2 \alpha-sin^2 \alpha) cos \alpha-2 sin \alpha cos \alpha sin \alpha+=` `cos^3 \alpha-3 sin^2 \alpha cos \alpha`.

Заменив в конечном равенстве `cos \ 3\alpha=cos^3 \alpha-3 sin^2 \alpha cos \alpha` `sin^2\alpha` на `1-cos^2\alpha`, получим `cos \ 3\alpha=4cos^3 \alpha-3 \ cos \ \alpha`.

С помощью доказанных тождеств для синуса и косинуса можно доказать для тангенса и котангенса:

`tg \ 3\alpha=\frac {sin \ 3\alpha}{cos \ 3\alpha}=` `\frac {3 sin \alpha cos^2 \alpha-sin^3 \alpha}{cos^3 \alpha-3 sin^2 \alpha cos \alpha}=` `\frac {\frac{3 sin \alpha cos^2 \alpha-sin^3 \alpha}{cos^3 \alpha}}{\frac{cos^3 \alpha-3 sin^2 \alpha cos \alpha}{cos^3 \alpha}}=` `\frac {3 \cdot \frac{ sin \alpha }{cos \alpha}-\frac{ sin^3 \alpha }{cos^3 \alpha}}{1-3\frac{sin^2 \alpha}{cos^2 \alpha}}=` `\frac{3 \ tg \ \alpha-tg^3 \alpha}{1-3tg^2 \alpha}`;

`ctg \ 3\alpha=\frac {cos \ 3\alpha}{sin \ 3\alpha}=` `\frac {cos^3 \alpha-3 sin^2 \alpha cos \alpha}{3 sin \alpha cos^2 \alpha-sin^3 \alpha}=` `\frac {\frac{cos^3 \alpha-3 sin^2 \alpha cos \alpha}{sin^3 \alpha}}{\frac{3 sin \alpha cos^2 \alpha-sin^3 \alpha}{sin^3 \alpha}}=` `\frac {\frac{ cos^3 \alpha }{sin^3 \alpha}-3 \cdot \frac{cos \alpha}{ sin \alpha }}{3\frac{cos^2 \alpha}{sin^2 \alpha}-1}=` `ctg \ 3\alpha=\frac{ctg^3 \alpha-3 \ ctg \ \alpha}{3 \ ctg^2 \alpha-1}`.

Для доказательства формул угла ` 4\alpha` можно представить его как ` 2 \cdot 2\alpha` и примерить два раза формулы двойного угла.

Для вывода аналогичных равенств для угла ` 5\alpha` можно записать его, как ` 3\alpha + 2\alpha` и применить тождества суммы и разности углов и двойного и тройного угла.

Аналогично выводятся все формулы для других кратных углов, то нужны они на практике крайне редко.

Основные формулы тригонометрии - это формулы, устанавливающие связи между основными тригонометрическими функциями. Синус, косинус, тангенс и котангенс связаны между собой множеством соотношений. Ниже приведем основные тригонометрические формулы, а для удобства сгруппируем их по назначению. С использованием данных формул можно решить практически любую задачу из стандартного курса тригонометрии. Сразу отметим, что ниже приведены лишь сами формулы, а не их вывод, которому будут посвящены отдельные статьи.

Основные тождества тригонометрии

Тригонометрические тождества дают связь между синусом, косинусом, тангенсом и котангенсом одного угла, позволяя выразить одну функцию через другую.

Тригонометрические тождества

sin 2 a + cos 2 a = 1 t g α = sin α cos α , c t g α = cos α sin α t g α · c t g α = 1 t g 2 α + 1 = 1 cos 2 α , c t g 2 α + 1 = 1 sin 2 α

Эти тождества напрямую вытекают из определений единичной окружности, синуса (sin), косинуса (cos), тангенса (tg) и котангенса (ctg).

Формулы приведения

Формулы приведения позволяют переходить от работы с произвольными и сколь угодно большими углами к работе с углами в пределах от 0 до 90 градусов.

Формулы приведения

sin α + 2 π z = sin α , cos α + 2 π z = cos α t g α + 2 π z = t g α , c t g α + 2 π z = c t g α sin - α + 2 π z = - sin α , cos - α + 2 π z = cos α t g - α + 2 π z = - t g α , c t g - α + 2 π z = - c t g α sin π 2 + α + 2 π z = cos α , cos π 2 + α + 2 π z = - sin α t g π 2 + α + 2 π z = - c t g α , c t g π 2 + α + 2 π z = - t g α sin π 2 - α + 2 π z = cos α , cos π 2 - α + 2 π z = sin α t g π 2 - α + 2 π z = c t g α , c t g π 2 - α + 2 π z = t g α sin π + α + 2 π z = - sin α , cos π + α + 2 π z = - cos α t g π + α + 2 π z = t g α , c t g π + α + 2 π z = c t g α sin π - α + 2 π z = sin α , cos π - α + 2 π z = - cos α t g π - α + 2 π z = - t g α , c t g π - α + 2 π z = - c t g α sin 3 π 2 + α + 2 π z = - cos α , cos 3 π 2 + α + 2 π z = sin α t g 3 π 2 + α + 2 π z = - c t g α , c t g 3 π 2 + α + 2 π z = - t g α sin 3 π 2 - α + 2 π z = - cos α , cos 3 π 2 - α + 2 π z = - sin α t g 3 π 2 - α + 2 π z = c t g α , c t g 3 π 2 - α + 2 π z = t g α

Формулы приведения являются следствием периодичности тригонометрических функций.

Тригонометрические формулы сложения

Формулы сложения в тригонометрии позволяют выразить тригонометрическую функцию суммы или разности углов через тригонометрические функции этих углов.

Тригонометрические формулы сложения

sin α ± β = sin α · cos β ± cos α · sin β cos α + β = cos α · cos β - sin α · sin β cos α - β = cos α · cos β + sin α · sin β t g α ± β = t g α ± t g β 1 ± t g α · t g β c t g α ± β = - 1 ± c t g α · c t g β c t g α ± c t g β

На основе формул сложения выводятся тригонометрические формулы кратного угла.

Формулы кратного угла: двойного, тройного и т.д.

Формулы двойного и тройного угла

sin 2 α = 2 · sin α · cos α cos 2 α = cos 2 α - sin 2 α , cos 2 α = 1 - 2 sin 2 α , cos 2 α = 2 cos 2 α - 1 t g 2 α = 2 · t g α 1 - t g 2 α с t g 2 α = с t g 2 α - 1 2 · с t g α sin 3 α = 3 sin α · cos 2 α - sin 3 α , sin 3 α = 3 sin α - 4 sin 3 α cos 3 α = cos 3 α - 3 sin 2 α · cos α , cos 3 α = - 3 cos α + 4 cos 3 α t g 3 α = 3 t g α - t g 3 α 1 - 3 t g 2 α c t g 3 α = c t g 3 α - 3 c t g α 3 c t g 2 α - 1

Формулы половинного угла

Формулы половинного угла в тригонометрии являются следствием формул двойного угла и выражают соотношения между основными функциями половинного угла и косинусом целого угла.

Формулы половинного угла

sin 2 α 2 = 1 - cos α 2 cos 2 α 2 = 1 + cos α 2 t g 2 α 2 = 1 - cos α 1 + cos α c t g 2 α 2 = 1 + cos α 1 - cos α

Формулы понижения степени

Формулы понижения степени

sin 2 α = 1 - cos 2 α 2 cos 2 α = 1 + cos 2 α 2 sin 3 α = 3 sin α - sin 3 α 4 cos 3 α = 3 cos α + cos 3 α 4 sin 4 α = 3 - 4 cos 2 α + cos 4 α 8 cos 4 α = 3 + 4 cos 2 α + cos 4 α 8

Часто при расчетах действовать с громоздктми степенями неудобно. Формулы понижения степени позволяют понизить степень тригонометрической функции со сколь угодно большой до первой. Приведем их общий вид:

Общий вид формул понижения степени

для четных n

sin n α = C n 2 n 2 n + 1 2 n - 1 ∑ k = 0 n 2 - 1 (- 1) n 2 - k · C k n · cos ((n - 2 k) α) cos n α = C n 2 n 2 n + 1 2 n - 1 ∑ k = 0 n 2 - 1 C k n · cos ((n - 2 k) α)

для нечетных n

sin n α = 1 2 n - 1 ∑ k = 0 n - 1 2 (- 1) n - 1 2 - k · C k n · sin ((n - 2 k) α) cos n α = 1 2 n - 1 ∑ k = 0 n - 1 2 C k n · cos ((n - 2 k) α)

Сумма и разность тригонометрических функций

Разность и сумму тригонометрических функций можно представить в виде произведения. Разложение на множители разностей синусов и косинусов очень удобно применять при решении тригонометрических уравнений и упрощении выражений.

Сумма и разность тригонометрических функций

sin α + sin β = 2 sin α + β 2 · cos α - β 2 sin α - sin β = 2 sin α - β 2 · cos α + β 2 cos α + cos β = 2 cos α + β 2 · cos α - β 2 cos α - cos β = - 2 sin α + β 2 · sin α - β 2 , cos α - cos β = 2 sin α + β 2 · sin β - α 2

Произведение тригонометрических функций

Если формулы суммы и разности функций позволяют перейти к их произведению, то формулы произведения тригонометрических функций осуществляют обратный переход - от произведения к сумме. Рассматриваются формулы произведения синусов, косинусов и синуса на косинус.

Формулы произведения тригонометрических функций

sin α · sin β = 1 2 · (cos (α - β) - cos (α + β)) cos α · cos β = 1 2 · (cos (α - β) + cos (α + β)) sin α · cos β = 1 2 · (sin (α - β) + sin (α + β))

Универсальная тригонометрическая подстановка

Все основные тригонометрические функции - синус, косинус, тангенс и котангенс, - могут быть выражены через тангенс половинного угла.

Универсальная тригонометрическая подстановка

sin α = 2 t g α 2 1 + t g 2 α 2 cos α = 1 - t g 2 α 2 1 + t g 2 α 2 t g α = 2 t g α 2 1 - t g 2 α 2 c t g α = 1 - t g 2 α 2 2 t g α 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Формулы суммы и разности синусов и косинусов для двух углов α и β позволяют перейти от суммы указанных углов к произведению углов α + β 2 и α - β 2 . Сразу отметим, что не стоит путать формулы суммы и разности синусов и косинусов с формулами синусов и косинусов суммы и разности. Ниже мы перечислим эти формулы, приведем их вывод и покажем примеры применения для конкретных задач.

Формулы суммы и разности синусов и косинусов

Запишем, как выглядят формулы суммы и разности для синусов и для косинусов

Формулы суммы и разности для синусов

sin α + sin β = 2 sin α + β 2 cos α - β 2 sin α - sin β = 2 sin α - β 2 cos α + β 2

Формулы суммы и разности для косинусов

cos α + cos β = 2 cos α + β 2 cos α - β 2 cos α - cos β = - 2 sin α + β 2 cos α - β 2 , cos α - cos β = 2 sin α + β 2 · β - α 2

Данные формулы справедливы для любых углов α и β . Углы α + β 2 и α - β 2 называются соответственно полусуммой и полуразностью углов альфа и бета. Дадим формулировку для каждой формулы.

Определения формул сумм и разности синусов и косинусов

Сумма синусов двух углов равна удвоенному произведению синуса полусуммы этих углов на косинус полуразности.

Разность синусов двух углов равна удвоенному произведению синуса полуразности этих углов на косинус полусуммы.

Сумма косинусов двух углов равна удвоенному произведению косинуса полусуммы и косинуса полуразности этих углов.

Разность косинусов двух углов равна удвоенному произведению синуса полусуммы на косинус полуразности этих углов, взятому с отрицательным знаком.

Вывод формул суммы и разности синусов и косинусов

Для вывода формул суммы и разности синуса и косинуса двух углов используются формулы сложения. Приведем их ниже

sin (α + β) = sin α · cos β + cos α · sin β sin (α - β) = sin α · cos β - cos α · sin β cos (α + β) = cos α · cos β - sin α · sin β cos (α - β) = cos α · cos β + sin α · sin β

Также представим сами углы в виде суммы полусумм и полуразностей.

α = α + β 2 + α - β 2 = α 2 + β 2 + α 2 - β 2 β = α + β 2 - α - β 2 = α 2 + β 2 - α 2 + β 2

Переходим непосредственно к выводу формул суммы и разности для sin и cos.

Вывод формулы суммы синусов

В сумме sin α + sin β заменим α и β на выражения для этих углов, приведенные выше. Получим

sin α + sin β = sin α + β 2 + α - β 2 + sin α + β 2 - α - β 2

Теперь к первому выражению применяем формулу сложения, а ко второму - формулу синуса разностей углов (см. формулы выше)

sin α + β 2 + α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 sin α + β 2 + α - β 2 + sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 + sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 Раскроем скобки, приведем подобные слагаемые и получим искомую формулу

sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 + sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 = = 2 sin α + β 2 cos α - β 2

Действия по выводу остальных формул аналогичны.

Вывод формулы разности синусов

sin α - sin β = sin α + β 2 + α - β 2 - sin α + β 2 - α - β 2 sin α + β 2 + α - β 2 - sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 - sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 = = 2 sin α - β 2 cos α + β 2

Вывод формулы суммы косинусов

cos α + cos β = cos α + β 2 + α - β 2 + cos α + β 2 - α - β 2 cos α + β 2 + α - β 2 + cos α + β 2 - α - β 2 = cos α + β 2 cos α - β 2 - sin α + β 2 sin α - β 2 + cos α + β 2 cos α - β 2 + sin α + β 2 sin α - β 2 = = 2 cos α + β 2 cos α - β 2

Вывод формулы разности косинусов

cos α - cos β = cos α + β 2 + α - β 2 - cos α + β 2 - α - β 2 cos α + β 2 + α - β 2 - cos α + β 2 - α - β 2 = cos α + β 2 cos α - β 2 - sin α + β 2 sin α - β 2 - cos α + β 2 cos α - β 2 + sin α + β 2 sin α - β 2 = = - 2 sin α + β 2 sin α - β 2

Примеры решения практических задач

Для начала, сделаем проверку одной из формул, подставив в нее конкретные значения углов. Пусть α = π 2 , β = π 6 . Вычислим значение суммы синусов этих углов. Сначала воспользуемся таблицей основных значений тригонометрических функций, а затем применим формулу для суммы синусов.

Пример 1. Проверка формулы суммы синусов двух углов

α = π 2 , β = π 6 sin π 2 + sin π 6 = 1 + 1 2 = 3 2 sin π 2 + sin π 6 = 2 sin π 2 + π 6 2 cos π 2 - π 6 2 = 2 sin π 3 cos π 6 = 2 · 3 2 · 3 2 = 3 2

Рассмотрим теперь случай, когда значения углов отличаются от основных значений, представленных в таблице. Пусть α = 165 ° , β = 75 ° . Вычислим значение разности синусов этих углов.

Пример 2. Применение формулы разности синусов

α = 165 ° , β = 75 ° sin α - sin β = sin 165 ° - sin 75 ° sin 165 - sin 75 = 2 · sin 165 ° - 75 ° 2 cos 165 ° + 75 ° 2 = = 2 · sin 45 ° · cos 120 ° = 2 · 2 2 · - 1 2 = 2 2

С помощью формул суммы и разности синусов и косинусов можно перейти от суммы или разности к произведению тригонометрических функций. Часто эти формулы называют формулами перехода от суммы к произведению. Формулы суммы и разности синусов и косинусов широко используются при решении тригонометрических уравнений и при преобразовании тригонометрических выражений.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Тригонометрические тождества - это равенства, которые устанавливают связь между синусом, косинусом, тангенсом и котангенсом одного угла, которая позволяет находить любую из данных функций при условии, что будет известна какая-либо другая.

\[ \sin^{2}\alpha + \cos^{2} \alpha = 1 \]

\[ tg \alpha = \dfrac{\sin \alpha}{\cos \alpha}, \enspace ctg \alpha = \dfrac{\cos \alpha}{\sin \alpha} \]

\[ tg \alpha \cdot ctg \alpha = 1 \]

Зависимость между синусом и косинусом

\[ \sin^{2} \alpha+\cos^{2} \alpha=1 \]

Данное тождество говорит о том, что сумма квадрата синуса одного угла и квадрата косинуса одного угла равна единице, что на практике дает возможность вычислить синус одного угла, когда известен его косинус и наоборот.

При преобразовании тригонометрических выражений очень часто используют данное тождество, которое позволяет заменять единицей сумму квадратов косинуса и синуса одного угла и также производить операцию замены в обратном порядке.

Нахождение тангенса и котангенса через синус и косинус

\[ tg \alpha = \dfrac{\sin \alpha}{\cos \alpha},\enspace ctg \alpha=\dfrac{\cos \alpha}{\sin \alpha} \]

Данные тождества образуются из определений синуса, косинуса, тангенса и котангенса. Ведь если разобраться, то по определению ординатой \(\dfrac{y}{x}=\dfrac{\sin \alpha}{\cos \alpha} \) , а отношение \(\dfrac{x}{y}=\dfrac{\cos \alpha}{\sin \alpha} \) - будет являться котангенсом.

Добавим, что только для таких углов \(\alpha \) , при которых входящие в них тригонометрические функции имеют смысл, будут иметь место тождества , .

Например: \(tg \alpha = \dfrac{\sin \alpha}{\cos \alpha} \) является справедливой для углов \(\alpha \) , которые отличны от \(\dfrac{\pi}{2}+\pi z \) , а \(ctg \alpha=\dfrac{\cos \alpha}{\sin \alpha} \) - для угла \(\alpha \) , отличного от \(\pi z \) , \(z \) - является целым числом.

Зависимость между тангенсом и котангенсом

\[ tg \alpha \cdot ctg \alpha=1 \]

Данное тождество справедливо только для таких углов \(\alpha \) , которые отличны от \(\dfrac{\pi}{2} z \) . Иначе или котангенс или тангенс не будут определены.

Опираясь на вышеизложенные пункты, получаем, что \(tg \alpha = \dfrac{y}{x} \) , а \(ctg \alpha=\dfrac{x}{y} \) . Отсюда следует, что \(tg \alpha \cdot ctg \alpha = \dfrac{y}{x} \cdot \dfrac{x}{y}=1 \) . Таким образом, тангенс и котангенс одного угла, при котором они имеют смысл, являются взаимно обратными числами.

Зависимости между тангенсом и косинусом, котангенсом и синусом

\(tg^{2} \alpha + 1=\dfrac{1}{\cos^{2} \alpha} \) - сумма квадрата тангенса угла \(\alpha \) и \(\alpha \) , отличных от \(\dfrac{\pi}{2}+ \pi z \) .

\(1+ctg^{2} \alpha=\dfrac{1}{\sin^{2}\alpha} \) - сумма \(\alpha \) , равняется обратному квадрату синуса данного угла. Данное тождество справедливо для любого \(\alpha \) , отличного от \(\pi z \) .

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

На этой странице вы найдете все основные тригонометрические формулы, которые помогут вам решать многие упражнения, значительно упростив само выражение.

Тригонометрические формулы - математические равенства для тригонометрических функций, которые выполняются при всех допустимых значениях аргумента.

Формулами задаются соотношения между основными тригонометрическими функциями – синусом, косинусом, тангенсом, котангенсом.

Синус угла – это координата y точки (ордината) на единичной окружности. Косинус угла – это координата x точки (абсцисса).

Тангенс и котангенс – это, соответственно, соотношения синуса к косинусу и наоборот.
`sin \ \alpha, \ cos \ \alpha`
`tg \ \alpha=\frac{sin\ \alpha}{cos \ \alpha},` ` \alpha\ne\frac\pi2+\pi n, \ n \in Z`
`ctg \ \alpha=\frac{cos\ \alpha}{sin\ \alpha},` ` \alpha\ne\pi+\pi n, \ n \in Z`

И две, которые используются реже – секанс, косеканс. Они обозначают соотношения 1 к косинусу и синусу.

`sec \ \alpha=\frac{1}{cos\ \alpha},` ` \alpha\ne\frac\pi2+\pi n,\ n \in Z`
`cosec \ \alpha=\frac{1}{sin \ \alpha},` ` \alpha\ne\pi+\pi n,\ n \in Z`

Из определений тригонометрических функций видно, какие знаки они имеют в каждой четверти. Знак функции зависит только от того, в какой из четвертей располагается аргумент.

При изменении знака аргумента с «+» на «-» только функция косинус не меняет своего значения. Она называется четной. Ее график симметричен относительно оси ординат.

Остальные функции (синус, тангенс, котангенс) нечетные. При смене знака аргумента с «+» на «-» их значение также изменяется на отрицательное. Их графики симметричны относительно начала координат.

`sin(-\alpha)=-sin \ \alpha`
`cos(-\alpha)=cos \ \alpha`
`tg(-\alpha)=-tg \ \alpha`
`ctg(-\alpha)=-ctg \ \alpha`

Основные тригонометрические тождества

Основные тригонометрические тождества – это формулы, устанавливающие связь между тригонометрическими функциями одного угла (`sin \ \alpha, \ cos \ \alpha, \ tg \ \alpha, \ ctg \ \alpha`) и которые позволяют находить значение каждой из этих функций через любую известную другую.
`sin^2 \alpha+cos^2 \alpha=1`
`tg \ \alpha \cdot ctg \ \alpha=1, \ \alpha\ne\frac{\pi n} 2, \ n \in Z`
`1+tg^2 \alpha=\frac 1{cos^2 \alpha}=sec^2 \alpha,` ` \alpha\ne\frac\pi2+\pi n, \ n \in Z`
`1+ctg^2 \alpha=\frac 1{sin^2 \alpha}=cosec^2 \alpha,` ` \alpha\ne\pi n, \ n \in Z`

Формулы суммы и разности углов тригонометрических функций

Формулы сложения и вычитания аргументов выражают тригонометрические функции суммы или разности двух углов через тригонометрические функции этих углов.
`sin(\alpha+\beta)=` `sin \ \alpha\ cos \ \beta+cos \ \alpha\ sin \ \beta`
`sin(\alpha-\beta)=` `sin \ \alpha\ cos \ \beta-cos \ \alpha\ sin \ \beta`
`cos(\alpha+\beta)=` `cos \ \alpha\ cos \ \beta-sin \ \alpha\ sin \ \beta`
`cos(\alpha-\beta)=` `cos \ \alpha\ cos \ \beta+sin \ \alpha\ sin \ \beta`
`tg(\alpha+\beta)=\frac{tg \ \alpha+tg \ \beta}{1-tg \ \alpha\ tg \ \beta}`
`tg(\alpha-\beta)=\frac{tg \ \alpha-tg \ \beta}{1+tg \ \alpha \ tg \ \beta}`
`ctg(\alpha+\beta)=\frac{ctg \ \alpha \ ctg \ \beta-1}{ctg \ \beta+ctg \ \alpha}`
`ctg(\alpha-\beta)=\frac{ctg \ \alpha\ ctg \ \beta+1}{ctg \ \beta-ctg \ \alpha}`

Формулы двойного угла

`sin \ 2\alpha=2 \ sin \ \alpha \ cos \ \alpha=` `\frac {2 \ tg \ \alpha}{1+tg^2 \alpha}=\frac {2 \ ctg \ \alpha}{1+ctg^2 \alpha}=` `\frac 2{tg \ \alpha+ctg \ \alpha}`
`cos \ 2\alpha=cos^2 \alpha-sin^2 \alpha=` `1-2 \ sin^2 \alpha=2 \ cos^2 \alpha-1=` `\frac{1-tg^2\alpha}{1+tg^2\alpha}=\frac{ctg^2\alpha-1}{ctg^2\alpha+1}=` `\frac{ctg \ \alpha-tg \ \alpha}{ctg \ \alpha+tg \ \alpha}`
`tg \ 2\alpha=\frac{2 \ tg \ \alpha}{1-tg^2 \alpha}=` `\frac{2 \ ctg \ \alpha}{ctg^2 \alpha-1}=` `\frac 2{ \ ctg \ \alpha-tg \ \alpha}`
`ctg \ 2\alpha=\frac{ctg^2 \alpha-1}{2 \ ctg \ \alpha}=` `\frac { \ ctg \ \alpha-tg \ \alpha}2`

Формулы тройного угла

`sin \ 3\alpha=3 \ sin \ \alpha-4sin^3 \alpha`
`cos \ 3\alpha=4cos^3 \alpha-3 \ cos \ \alpha`
`tg \ 3\alpha=\frac{3 \ tg \ \alpha-tg^3 \alpha}{1-3 \ tg^2 \alpha}`
`ctg \ 3\alpha=\frac{ctg^3 \alpha-3 \ ctg \ \alpha}{3 \ ctg^2 \alpha-1}`

Формулы половинного угла

`sin \ \frac \alpha 2=\pm \sqrt{\frac {1-cos \ \alpha}2}`
`cos \ \frac \alpha 2=\pm \sqrt{\frac {1+cos \ \alpha}2}`
`tg \ \frac \alpha 2=\pm \sqrt{\frac {1-cos \ \alpha}{1+cos \ \alpha}}=` `\frac {sin \ \alpha}{1+cos \ \alpha}=\frac {1-cos \ \alpha}{sin \ \alpha}`
`ctg \ \frac \alpha 2=\pm \sqrt{\frac {1+cos \ \alpha}{1-cos \ \alpha}}=` `\frac {sin \ \alpha}{1-cos \ \alpha}=\frac {1+cos \ \alpha}{sin \ \alpha}`

Формулы половинных, двойных и тройных аргументов выражают функции `sin, \ cos, \ tg, \ ctg` этих аргументов (`\frac{\alpha}2, \ 2\alpha, \ 3\alpha,… `) через эти ж функции аргумента `\alpha`.

Вывод их можно получить из предыдущей группы (сложения и вычитания аргументов). Например, тождества двойного угла легко получить, заменив `\beta` на `\alpha`.

Формулы понижения степени

Формулы квадратов (кубов и т. д.) тригонометрических функций позволяют перейти от 2,3,… степени к тригонометрическим функциям первой степени, но кратных углов (`\alpha, \ 3\alpha, \ …` или `2\alpha, \ 4\alpha, \ …`).
`sin^2 \alpha=\frac{1-cos \ 2\alpha}2,` ` (sin^2 \frac \alpha 2=\frac{1-cos \ \alpha}2)`
`cos^2 \alpha=\frac{1+cos \ 2\alpha}2,` ` (cos^2 \frac \alpha 2=\frac{1+cos \ \alpha}2)`
`sin^3 \alpha=\frac{3sin \ \alpha-sin \ 3\alpha}4`
`cos^3 \alpha=\frac{3cos \ \alpha+cos \ 3\alpha}4`
`sin^4 \alpha=\frac{3-4cos \ 2\alpha+cos \ 4\alpha}8`
`cos^4 \alpha=\frac{3+4cos \ 2\alpha+cos \ 4\alpha}8`

Формулы суммы и разности тригонометрических функций

Формулы являют собой преобразования суммы и разности тригонометрических функций разных аргументов в произведение.

`sin \ \alpha+sin \ \beta=` `2 \ sin \frac{\alpha+\beta}2 \ cos \frac{\alpha-\beta}2`
`sin \ \alpha-sin \ \beta=` `2 \ cos \frac{\alpha+\beta}2 \ sin \frac{\alpha-\beta}2`
`cos \ \alpha+cos \ \beta=` `2 \ cos \frac{\alpha+\beta}2 \ cos \frac{\alpha-\beta}2`
`cos \ \alpha-cos \ \beta=` `-2 \ sin \frac{\alpha+\beta}2 \ sin \frac{\alpha-\beta}2=` `2 \ sin \frac{\alpha+\beta}2 \ sin \frac{\beta-\alpha}2`
`tg \ \alpha \pm tg \ \beta=\frac{sin(\alpha \pm \beta)}{cos \ \alpha \ cos \ \beta}`
`ctg \ \alpha \pm ctg \ \beta=\frac{sin(\beta \pm \alpha)}{sin \ \alpha \ sin \ \beta}`
`tg \ \alpha \pm ctg \ \beta=` `\pm \frac{cos(\alpha \mp \beta)}{cos \ \alpha \ sin \ \beta}`

Здесь происходит преобразование сложения и вычитаний функций одного аргумента в произведение.

`cos \ \alpha+sin \ \alpha=\sqrt{2} \ cos (\frac{\pi}4-\alpha)`
`cos \ \alpha-sin \ \alpha=\sqrt{2} \ sin (\frac{\pi}4-\alpha)`
`tg \ \alpha+ctg \ \alpha=2 \ cosec \2\alpha;` `tg \ \alpha-ctg \ \alpha=-2 \ ctg \2\alpha`

Следующие формулы преобразовывают сумму и разность единицы и тригонометрической функции в произведение.

`1+cos \ \alpha=2 \ cos^2 \frac{\alpha}2`
`1-cos \ \alpha=2 \ sin^2 \frac{\alpha}2`
`1+sin \ \alpha=2 \ cos^2 (\frac {\pi} 4-\frac{\alpha}2)`
`1-sin \ \alpha=2 \ sin^2 (\frac {\pi} 4-\frac{\alpha}2)`
`1 \pm tg \ \alpha=\frac{sin(\frac{\pi}4 \pm \alpha)}{cos \frac{\pi}4 \ cos \ \alpha}=` `\frac{\sqrt{2} sin(\frac{\pi}4 \pm \alpha)}{cos \ \alpha}`
`1 \pm tg \ \alpha \ tg \ \beta=\frac{cos(\alpha \mp \beta)}{cos \ \alpha \ cos \ \beta};` ` \ ctg \ \alpha \ ctg \ \beta \pm 1=\frac{cos(\alpha \mp \beta)}{sin \ \alpha \ sin \ \beta}`

Формулы преобразования произведений функций

Формулы преобразования произведения тригонометрических функций с аргументами `\alpha` и `\beta` в сумму (разность) этих аргументов.
`sin \ \alpha \ sin \ \beta =` `\frac{cos(\alpha — \beta)-cos(\alpha + \beta)}{2}`
`sin\alpha \ cos\beta =` `\frac{sin(\alpha — \beta)+sin(\alpha + \beta)}{2}`
`cos \ \alpha \ cos \ \beta =` `\frac{cos(\alpha — \beta)+cos(\alpha + \beta)}{2}`
`tg \ \alpha \ tg \ \beta =` `\frac{cos(\alpha — \beta)-cos(\alpha + \beta)}{cos(\alpha — \beta)+cos(\alpha + \beta)} =` `\frac{tg \ \alpha + tg \ \beta}{ctg \ \alpha + ctg \ \beta}`
`ctg \ \alpha \ ctg \ \beta =` `\frac{cos(\alpha — \beta)+cos(\alpha + \beta)}{cos(\alpha — \beta)-cos(\alpha + \beta)} =` `\frac{ctg \ \alpha + ctg \ \beta}{tg \ \alpha + tg \ \beta}`
`tg \ \alpha \ ctg \ \beta =` `\frac{sin(\alpha — \beta)+sin(\alpha + \beta)}{sin(\alpha + \beta)-sin(\alpha — \beta)}`

Универсальная тригонометрическая подстановка

Эти формулы выражают тригонометрические функции через тангенс половинного угла.
`sin \ \alpha= \frac{2tg\frac{\alpha}{2}}{1 + tg^{2}\frac{\alpha}{2}},` ` \alpha\ne \pi +2\pi n, n \in Z`
`cos \ \alpha= \frac{1 — tg^{2}\frac{\alpha}{2}}{1 + tg^{2}\frac{\alpha}{2}},` ` \alpha \ne \pi +2\pi n, n \in Z`
`tg \ \alpha= \frac{2tg\frac{\alpha}{2}}{1 — tg^{2}\frac{\alpha}{2}},` ` \alpha \ne \pi +2\pi n, n \in Z,` ` \alpha \ne \frac{\pi}{2}+ \pi n, n \in Z`
`ctg \ \alpha = \frac{1 — tg^{2}\frac{\alpha}{2}}{2tg\frac{\alpha}{2}},` ` \alpha \ne \pi n, n \in Z,` `\alpha \ne \pi + 2\pi n, n \in Z`

Формулы приведения

Формулы приведения можно получить, используя такие свойства тригонометрических функций, как периодичность, симметричность, свойство сдвига на данный угол. Они позволяют функции произвольного угла преобразовать в функции, угол которых находится в пределе между 0 и 90 градусами.

Для угла (`\frac {\pi}2 \pm \alpha`) или (`90^\circ \pm \alpha`):
`sin(\frac {\pi}2 — \alpha)=cos \ \alpha;` ` sin(\frac {\pi}2 + \alpha)=cos \ \alpha`
`cos(\frac {\pi}2 — \alpha)=sin \ \alpha;` ` cos(\frac {\pi}2 + \alpha)=-sin \ \alpha`
`tg(\frac {\pi}2 — \alpha)=ctg \ \alpha;` ` tg(\frac {\pi}2 + \alpha)=-ctg \ \alpha`
`ctg(\frac {\pi}2 — \alpha)=tg \ \alpha;` ` ctg(\frac {\pi}2 + \alpha)=-tg \ \alpha`
Для угла (`\pi \pm \alpha`) или (`180^\circ \pm \alpha`):
`sin(\pi — \alpha)=sin \ \alpha;` ` sin(\pi + \alpha)=-sin \ \alpha`
`cos(\pi — \alpha)=-cos \ \alpha;` ` cos(\pi + \alpha)=-cos \ \alpha`
`tg(\pi — \alpha)=-tg \ \alpha;` ` tg(\pi + \alpha)=tg \ \alpha`
`ctg(\pi — \alpha)=-ctg \ \alpha;` ` ctg(\pi + \alpha)=ctg \ \alpha`
Для угла (`\frac {3\pi}2 \pm \alpha`) или (`270^\circ \pm \alpha`):
`sin(\frac {3\pi}2 — \alpha)=-cos \ \alpha;` ` sin(\frac {3\pi}2 + \alpha)=-cos \ \alpha`
`cos(\frac {3\pi}2 — \alpha)=-sin \ \alpha;` ` cos(\frac {3\pi}2 + \alpha)=sin \ \alpha`
`tg(\frac {3\pi}2 — \alpha)=ctg \ \alpha;` ` tg(\frac {3\pi}2 + \alpha)=-ctg \ \alpha`
`ctg(\frac {3\pi}2 — \alpha)=tg \ \alpha;` ` ctg(\frac {3\pi}2 + \alpha)=-tg \ \alpha`
Для угла (`2\pi \pm \alpha`) или (`360^\circ \pm \alpha`):
`sin(2\pi — \alpha)=-sin \ \alpha;` ` sin(2\pi + \alpha)=sin \ \alpha`
`cos(2\pi — \alpha)=cos \ \alpha;` ` cos(2\pi + \alpha)=cos \ \alpha`
`tg(2\pi — \alpha)=-tg \ \alpha;` ` tg(2\pi + \alpha)=tg \ \alpha`
`ctg(2\pi — \alpha)=-ctg \ \alpha;` ` ctg(2\pi + \alpha)=ctg \ \alpha`

Выражение одних тригонометрических функций через другие

`sin \ \alpha=\pm \sqrt{1-cos^2 \alpha}=` `\frac{tg \ \alpha}{\pm \sqrt{1+tg^2 \alpha}}=\frac 1{\pm \sqrt{1+ctg^2 \alpha}}`
`cos \ \alpha=\pm \sqrt{1-sin^2 \alpha}=` `\frac 1{\pm \sqrt{1+tg^2 \alpha}}=\frac {ctg \ \alpha}{\pm \sqrt{1+ctg^2 \alpha}}`
`tg \ \alpha=\frac {sin \ \alpha}{\pm \sqrt{1-sin^2 \alpha}}=` `\frac {\pm \sqrt{1-cos^2 \alpha}}{cos \ \alpha}=\frac 1{ctg \ \alpha}`
`ctg \ \alpha=\frac {\pm \sqrt{1-sin^2 \alpha}}{sin \ \alpha}=` `\frac {cos \ \alpha}{\pm \sqrt{1-cos^2 \alpha}}=\frac 1{tg \ \alpha}`

Тригонометрия в буквальном смысле переводится, как «измерение треугольников». Она начинает изучаться еще в школе, и продолжается более детально в ВУЗах. Поэтому основные формулы по тригонометрии нужны, начиная еще с 10 класса, а также для сдачи ЕГЭ. Они обозначают связи между функциями, а поскольку этих связей много, то и самых формул есть немало. Запомнить их все нелегко, да и не надо – при необходимости их все можно вывести.

Тригонометрические формулы применяются в интегральном исчислении, а также при тригонометрических упрощениях, вычислениях, преобразованиях.