Производная частного двух функций (производная дроби). Решение производной для чайников: определение, как найти, примеры решений Как искать производную от дроби

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная - одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Геометрический и физический смысл производной

Пусть есть функция f(x) , заданная в некотором интервале (a, b) . Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0 . Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

Иначе это можно записать так:

Какой смысл в нахождении такого предела? А вот какой:

производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.


Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t . Средняя скорость за некоторый промежуток времени:

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того - это нужно делать. При решении примеров по математике возьмите за правило - если можете упростить выражение, обязательно упрощайте .

Пример. Вычислим производную:

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

Пример: найти производную функции:

Решение:

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис . За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.

Основные правила дифференцирования. Сумма.

Выведем несколько правил вычисления производных, В этом пункте значения функций u и v и их производных в точке х 0 обозначаются для краткости так: u(х 0) = u, v(х 0) = v, u"(х 0) = u", v"(х 0)=v`. Если функции u и v дифференцируемы в точке х 0 , то их сумма дифференцируема в этой точке и

(u+v)" = u" + v" .

Коротко говорят: производная суммы равна сумме производных . 1) Для доказательства вычислим сначала приращение суммы функций в рассматриваемой точке: Δ(u+v) = u (х 0 +Δx)+ v(х 0 +Δx) – (u(х 0)+v(х 0)) = (u(х 0 +Δx)-u(х 0)) + (v(х 0 +Δx)-v(х 0)) = Δu + Δv 2)

3) Функции u и v дифференцируемы в точке х 0 , т. е. при Δх→0

при Δх→0 (см. правило 3, а) предельного перехода ), т. е. (u+v)" = u"+v’

Основные правила дифференцирования. Произведение.

Если функции и и v дифференцируемы в точке х 0 , то их произведение дифференцируемо в этой точке и

(uv)" = u"v+uv" .

1) Найдем сначала приращение произведения:

Δ(uv) = u(х 0 +Δx)v(х 0 +Δx)-u(х 0)v(х 0)=(u(х 0)+ Δu)(v(х 0)+ Δv)-u(х 0)v(х 0) =

U(х 0)v(х 0)+ Δuv(х 0)+u(х 0) Δv+ΔuΔv-u(х 0)v(х 0)= Δuv(х 0)+u(х 0) Δv+ΔuΔv

3) В силу дифференцируемости функций u и v в точке х 0 при Δx→0 имеем

т. е. (uv)" = u"v+uv", что и требовалось доказать. Следствие. Если функция u дифференцируема в х 0 , а С - постоянная, то функция Сu дифференцируема в этой точке и

(Сu)" = Сu" .

Коротко говорят: постоянный множитель можно выносить за знак производной . Для доказательства воспользуемся правилом 2 и известным из пункта о производной , фактом С" = 0:

(Сu)" = Сu" + С"u = Cu" + 0⋅u = Cu".

Пример.

Продифференцировать функцию .

Решение.

В данном примере . Применяем правило производной произведения:

Обращаемся к таблице производных основных элементарных функций и получаем ответ:

Основные правила дифференцирования. Частное

Если функции u и v дифференцируемы в точке x 0 и функция v не равна нулю в этой точке, то частное u/v также дифференцируемо в x 0 и

Выведем сначала формулу

1) найдем приращение функции 1/v:

2) Отсюда

3) При Δx→0 имеем Δv/Δx→v’ (в силу дифференцируемости v в точке x 0), Δv→0 (по доказанной лемме ). Поэтому

Теперь, пользуясь правилом нахождения производной произведения функций, находим производную частного:

Пример.

Выполнить дифференцирование функции .

Решение.

Исходная функция представляет собой отношение двух выражений sinx и 2x+1 . Применим правило дифференцирования дроби:

Не обойтись без правил дифференцирования суммы и вынесения произвольной постоянной за знак производной:

Производная сложной функции.

Если функция f имеет производную в точке х 0 , а функция g имеет производную в точке y 0 =f(x 0 )y то сложная функция h(х) = g(f(х)) также имеет производную в точке х 0 , причем

h’(x 0 ) = g’(f(x 0 )) f’(x 0 ) (1)

Для доказательства формулы (1) надо (как и раньше) при Δx≠0 рассмотреть дробь Δh/Δx и установить, что

при Δx→0. Введем обозначения:

Δy = f(x 0 +Δx)-f(x 0)= Δf

Тогда Δh = h(х 0 + Δх) - h(x 0) = g(f(x 0 +Δx)) - g(f(x 0)) = g(y 0 + Δy) - g(y 0) = Δg. Δy→0 при Δx→0, так как f дифференцируема в точке x 0 . Далее доказательство мы проведем только для таких функций f, у которых Δf≠0 в некоторой окрестности точки х 0 . Тогда

при Δx→0, так как Δf/Δx→f’(x 0) при Δx→0, а Δg/Δy→g’(y 0) при Δy→0, что выполнено при Δx→0.

Пример.НА ВСЯКИЙ СЛУЧАЙ!! ! ! !!! http://www.mathelp.spb.ru/book1/proizvodnaya.htm

Производная обратной функции.

Пусть функция дифференцируема и строго монотонна на . Пусть также в точке производная . Тогда в точке определена дифференцируемая функция , которую называют обратной к , а ее производная вычисляется по формуле .

Найти производную обратной тригонометрической функции y = arcsinx. Обратная функция x = siny и , по формуле для обратной функции .

Найдем функции y = arctgx. Обратная функция x = tgy,

Производная суммы, производная разности.

Для доказательства второго правила дифференцирования воспользуемся определением производной и свойством предела непрерывной функции.

Подобным образом можно доказать, что производная суммы (разности) n функций равна сумме (разности) n производных

Пример.

Найти производную функции

Решение.

Упростим вид исходной функции

Используем правило производной суммы (разности):

В предыдущем пункте мы доказали, что постоянный множитель можно выносить за знак производной, поэтому

Осталось воспользоваться таблицей производных:

Происхождение дифференциального исчисления вызвано необходимостью решать определенные физические задачи. Предполагается, что человек, обладающий дифференциальным исчислением, может брать производные от разных функций. Умеете ли вы брать производную от функции, выраженной дробью?

Инструкция

1. Любая дробь имеет числитель и знаменатель. В процессе нахождения производной от дроби понадобится находить отдельно производную числителя и производную знаменателя.

2. Дабы обнаружить производную от дроби , производную числителя домножьте на знаменатель. Вычтите из полученного выражения производную знаменателя, помноженную на числитель. Итог поделите на знаменатель в квадрате.

3. Пример 1’ = / cos? (x) = / cos? (x) = / cos? (x) = 1 / cos? (x).

4. Полученный итог является ничем другим, как табличным значением производной функции тангенса. Оно и внятно, чай отношение синуса к косинусу и есть, по определению, тангенс. Выходит,tg (x) = ’ = 1 / cos? (x).

5. Пример 2[(x? - 1) / 6x]’ = [(2x · 6x - 6 · x?) / 6?] = / 36 = 6x? / 36 = x? / 6.

6. Частным случаем дроби является такая дробь, у которой в знаменателе единица. Обнаружить производную от такого вида дроби проще: довольно представить ее в виде знаменателя со степенью (-1).

7. Пример(1 / x)’ = ’ = -1 · x^(-2) = -1 / x?.

Обратите внимание!
Дробь может содержать в своем составе еще несколько дробей. В таком случае комфортнее находить вначале отдельно производные «первичных» дробей.

Полезный совет
Когда вы ищите производные знаменателя и числителя, применяйте правила дифференцирования: суммы, произведения, трудных функций. Пригодно удерживать в голове производные простейших табличных функций: линейной, показательной, степенной, логарифмической, тригонометрических и т.д.